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Abstract—We present a novel method for accurately auditing
the differential privacy (DP) guarantees of DP mechanisms. In
particular, our solution is applicable to auditing DP guarantees of
machine learning (ML) models. Previous auditing methods tightly
capture the privacy guarantees of DP-SGD trained models in the
white-box setting where the auditor has access to all intermediate
models. However, the success of these methods depends on prior
information about the parametric form of the noise and the
subsampling ratio used for sampling the gradients. We present a
method that does not require such information and is agnostic to
the randomization used for the underlying mechanism. Similar
to a large majority of previous DP auditing methods, we assume
that the auditor has access to a set of independent observations
from two one-dimensional distributions corresponding to outputs
from two neighboring datasets. Our solution is based on a sim-
ple histogram-based density estimation technique to find lower
bounds for the statistical distance between these distributions
when measured using the hockey-stick divergence. We show that
our approach also naturally generalizes the previously considered
class of threshold membership inference auditing methods. We
improve upon the state-of-the-art accurate auditing methods,
specifically f-DP auditing. We also address an open problem on
how to accurately audit the subsampled Gaussian mechanism
without any knowledge of the parameters of the underlying
mechanism.

Index Terms—Differential Privacy, Auditing, Machine Learn-
ing, DP-SGD

I. INTRODUCTION

Differential Privacy (DP) [1] limits the disclosure of mem-
bership information about individuals in statistical data anal-
yses. It has also been successfully applied to the training of
machine learning (ML) models, in which the de facto standard
is the DP stochastic gradient descent (DP-SGD) [2], [3]. DP-
SGD enables the analysis of formal (e, d)-DP guarantees via
composition analysis in a threat model in which the guarantees
hold against an adversary with access to the whole history of
models. Using modern numerical accounting tools [4], [, [6],
it is also possible to obtain accurate (¢, d)-DP guarantees for
DP-SGD within this threat model.

We motivate the privacy auditing problem with the fol-
lowing scenario: Consider a federated learning (FL) setup,
where a partially trusted server enhances the DP protection by
aggregating the local model updates and adding noise to the
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global updates. Achieving the theoretical privacy guarantees
of DP-SGD requires a notoriously complex implementation
setup [7]], [8]. Since parts of the model updates are performed
by an external entity, a data owner cannot fully ensure that the
DP guarantees hold [9], [[10]. This raises the question: how can
the data owner conduct privacy auditing to ensure at least a
certain amount of DP protection? Therefore, establishing some
certainty about lower bounds for the DP parameters € and ¢
is essential.

The problem of DP auditing has gained increasing attention
in recent years. Many existing works on DP-SGD auditing
focus on inserting well-designed data elements or gradients
into the training dataset, known canaries. By observing their
effect in the trained model, one can infer about the DP
guarantees [L1], [12], [13], [8]. We note that these methods
often require training several models in order to obtain the
estimates of the DP guarantees, even up to thousands [13].
To address the computational burden of training the model
multiple times, recently [14] and [10] have proposed different
approaches where auditing can be carried out in a single DP-
SGD training iteration.

Most of the methods such as [11], [12], [8]], [13], [10]
are ultimately based on estimating the (e,d)-DP distance
between two distributions corresponding to the outcomes of
DP mechanisms evaluated on datasets differing only by one
data element. For instance, in black-box auditing, one dis-
tribution would correspond to loss function values evaluated
on a dataset including a given data sample z while the other
corresponds to the same dataset with z excluded [1L1]], [12]], [8],
[15]. The (e, §)-guarantees are then commonly estimated using
threshold membership inference attacks [16]], [17], where a
model is deemed to contain the given sample if its loss
function value for that sample falls below a certain threshold.
By training multiple models, once with and once without the
differing sample, and by measuring the false positive rates
(FPRs) and false negative rates (FNRs) of the membership
inferences, empirical e-estimates can be derived for a given
value of § [18]. Our work can be seen as a generalization
of this approach such that we estimate the two neighboring
distributions using histograms. As we show, the empirical e-
values obtained via threshold membership inference attacks are
equivalent to measuring the hockey-stick divergence between
the two discrete distribution obtained by histogram estimation
with two bins determined by the threshold.

One drawback of the threshold membership inference based



auditing methods is that they tend to underestimate the e-
values. To address this, [8] proposes f-DP auditing, where
a certain trade-off curve f is fitted so that the FNRs and FPRs
of the membership inference attacks stay below f with high
confidence, thereby providing high-confidence lower bounds
for the DP parameters ¢ and J. This approach, however, also
has its drawbacks, as its success depends on selecting suitable
f for the trade-off curve which generally requires prior knowl-
edge about the DP randomization mechanism. Additionally, it
often involves a complicated numerical integration procedure,
which may lead to instabilities, as we also demonstrate in
this paper. Our approach is similar in the sense that we also
aim to accurately approximate the trade-off function. Our
approach differs in that its success does not depend on any
prior knowledge about the DP mechanism and it has a simple
and robust implementation.

In the FL setting, two notable works are related to ours, both
based on estimating the (e, §)-distance between two Gaussian
distributions [10], [9]. The work [[10] proposes inserting ran-
domly sampled canaries in the model updates and the method
given in [9] involves carefully crafting canary gradients. We
show that our approach generalizes the auditing method of [10]
by analytically showing that our histogram-based method gives
asymptotically the correct guarantees as the model dimension
increases, similarly to the method of [10] which requires prior
knowledge about the noise.

Our paper is organized as follows. After presenting the
necessary definitions and results on DP, in Section we
describe the idea of obtaining (e, §)-DP lower bounds through
the hockey-stick divergence between certain histogram esti-
mates. In Section [V| we outline how our approach generalizes
the threshold inference auditing, and in Section |VI| we provide
numerical toy examples to illustrate the advantages of our
approach. Finally, in Section experiments on small neural
networks in both black-box and white-box settings further
confirm the benefits of our auditing method.

Our main contributions can be summarized as follows:

o We introduce a novel method of auditing the DP guar-
antees of a mechanism M using samples from two
distributions that are known to be post-processed out-
puts of M evaluated on neighboring datasets. This fits
perfectly to several previously considered black-box and
white-box auditing scenarios [11], [12], [8], [15]. Our
method extends the class of threshold membership in-
ference methods by simultaneously considering multiple
membership regions and by using histogram estimation
of the distributions to obtain a more accurate estimate of
the (e, §)-distance.

o We solve an open problem posed in [8] regarding how
to tightly audit the subsampled Gaussian mechanism. As
demonstrated in [8] shows, a single threshold membership
inference is insufficient to capture the accurate trade-off
curve of the subsampled Gaussian mechanism. We show,
both theoretically and empirically, that the trade-off curve
estimated using our method converges to the true trade-
off curve. In addition to addressing the implementation

bugs of DP-SGD discussed in the works [7] and [8],
our method also allows auditing errors related to the
implementation of subsampling.

e We propose a heuristic algorithm for estimating the
privacy loss distribution of the underlying mechanism in
the white-box auditing setting. This allows for accurate
estimates for a given number of compositions of the DP
mechanisms to be audited.

o« We conduct numerical experiments on neural network
training on two datasets to demonstrate the benefits of
our approach.

o Additionally, in Appendix Section [H| we analytically
illustrate that the total variation distance provides a robust
estimator when the privacy profiles depend on a single
parameter, and in Appendix Section [G] we analytically
show that our method generalizes the one-shot auditing
method of [10] that uses random gradient canaries.

II. BACKGROUND
A. Differential Privacy

We denote the space of possible data points by X. We de-
note a dataset containing n data points as D = (1,...,%,) €
X™, and the space of all possible datasets (of all sizes) by X.
We say D and D’ are neighboring datasets if we get one
by substituting one element in the other (denoted D ~ D’).
Let P(O) denote the set of probability distributions with a
support in an output space O. We say that a mechanism
M : X = P(O) (or, a randomized function) is (&, )-DP
if it satisfies the condition of the following definition.

Definition 1. Let ¢ > 0 and § € [0,1]. Mechanism M :
X — P(O) is (g,)-DP if for every pair of neighboring
datasets D, D' € X and every measurable set E C O,

P(M(D) € E) < e*P(M(D') € E) + 0.

For two distributions P and () with support in the output
space O, we say that they are (e, §)-indistinguishable in case
for every measurable set E C O,P(P € E) <e®P(Q € E)+
d and P(Q € E) <e°P(P € E) + ¢. Thus, a mechanism M
is (¢, 6)-DP if the output distributions for neighboring datasets
are always (e, §)-indistinguishable.

The tight (e,d)-guarantees for a mechanism M can be
stated using the hockey-stick divergence. For a > 0 the
hockey-stick divergence H, from a distribution P to a dis-
tribution () is defined as

Ho(P||Q) = / P(t)—a-QW), d, (LD

where [t]+ = max{0,¢}. The (e¢,0)-DP guarantees can be
characterized using the hockey-stick divergence as follows (see
Theorem 1 in [19]]).

Lemma 2. For a given ¢ € R, a mechanism M satisfies
(¢,0)-DP if and only if, for all neighboring datasets D, D',

Hee(M(D)[IM(D)) < 6.



We also refer to o (€) := maxp~pr Hee (M(D)||M(D"))
as the privacy profile of mechanism M.

By Lemma [2| if we can bound He-(M(D)||M(D’)) ac-
curately for all neighboring datasets D, D’, we also obtain
accurate (,6)-DP bounds. For compositions of general DP
mechanisms, this can be carried out by using so-called domi-
nating pairs of distributions [S]] and numerical techniques [20],
[6]. In some cases, such as for the Gaussian mechanism, the
hockey-stick divergence leads to analytical expressions
for tight (£, 0)-DP guarantees [21]].

Lemma 3. Let dy,d; € RY o > 0, and let P be the
density function of N'(dy,0?1;) and Q the density function of
N (dy,0%1,). Then, for all € € R, the divergence H.-(P||Q)
is given by the expression

ec A .
5(5):@(—A+20) —e€ (I)(_A_%)’ (IL2)

where ® denotes the CDF of the standard univariate Gaussian
distribution and A = ||do — d1|,.

Setting e = 1 in Eq. (IL.I)), we get the total variation (TV)
distance between the probability distributions P and @ (see,
e.g., [22]),

WV(PQ) = [ IP@) - Q)] do -

- [P) - Q). da.

When P and @) are discrete, defined by probabilities pj and
qr, k € Z, respectively, we have the important special case of
discrete TV distance defined by

VPR =), .
B. Trade-Off Functions and Functional DP

DP can also be understood from a hypothesis testing per-
spective [23]. In the context of ML model auditing, this can
be formulated as follows [8]. Consider the hypothesis testing
problem

max{pr — ¢, 0}.

H()Z
Hli

the model 0 is drawn from P

the model @ is drawn from @),

where P and @) are obtained via some post-processing of the
probability distributions of M (D) and M(D’), respectively.
This ensures, in particular, by the post-processing property
of DP, that if M is (¢,9)-DP, then P and @ are (e,0)-
indistinguishable. Furthermore, this allows obtaining lower
bounds for the DP guarantees of M by obtaining lower bounds
for the (e, §)-parameters of P and Q.

The trade-off function, as defined in [24], captures the
difficulty of distinguishing the hypotheses Hy and H;. Given
a rejection rule 0 < ¢(0) < 1 that takes as an input the model
0 trained by the mechanism M, the type I error is defined as
ay = Ep[¢] and the type II error as 3, = 1 — Eg[¢]. Then,
the trade-off function that describes the upper bound for the
distinguishability is given as follows.

Definition 4. Define the trade-off function T (P, Q) :
[0, 1] for two probability distributions P and Q as

T(P,Q)(a) = inf{f, :

For an arbitrary function f : [0,1] — [0, 1], the following
properties characterize whether it is a trade-off function (see
Prop. 2.2 in [24]).

[0,1] —

ay < al.

Lemma 5. A function f : [0,1] — [0, 1] is a trade-off function
if and only if f is convex, continuous, non-increasing, and

fx) <1 —a forall x €0,1].
The f-DP can be then defined as follows.

Definition 6. Let f be a trade-off function. A mechanism M
is f-DP if
T(M(D),M(D")) = f

for all neighboring datasets D and D'

As shown in [24], (e, )-DP is equivalent to f-DP for the
following trade-off function:

fes(@) =max{0,1 -5 —e‘a,e (1 -5 —a)}.
From this, we directly get the following accurate characteri-

zation of the trade-off function for a given mechanism M.

Lemma 7. Suppose we have a privacy profile h(«) of the
mechanism M. Then, the function given by

flz) = I;lzaéimax{(), 1 —h(a) —ar,a (1 = h(a) — )}

is a trade-off function of M.

This also allows approximating the trade-off func-
tion using numerical integrators given a set of points
(€1,01),- -+, (em,0m). From Lemma [7} we directly have the
following approximation algorithm which is essentially the one
given if Appendix A of [8].

Algorithm 1 Estimation of the trade-off function f using a
privacy profile §(¢)

F'aq privacy analysis function that gives that outputs € for
a given §, n number of discretization points, ¢ target delta
in the DP analysis.

A + n linearly spaced points on the interval [§,1 — ¢].
for ' € A: do

€+ Fm(d) -
fs(z) :=max{0,1 — ¢ — ze®,e (1 — & —2)}
end for

f(z) := maxseca for(x)

We may also utilize Lemma [/| and use the procedure of
Alg. [T]to estimate the trade-off function when we are given a
point-wise estimation of the privacy profile represented by a
discrete set {(€1,61),- - -, (Em, Om)},. This is shown in Alg.

Informally speaking, a mechanism is pu-GDP if the outcomes
from two neighboring distributions are not more distinguish-
able than two unit variance Gaussians p apart from each other.



Algorithm 2 Estimation of the trade-off function f using a
set of points A = {(1,01),..., (Em,0m)}

Set of points A = {(€1,01),...,(€m,0m)}, n number of

discretization points, ¢ target delta in the DP analysis.

for (¢/,8') € A: do

fs(z) :=max{0,1 — & —ze e (1 -0 — )}
end for
f(z) := maxgen fs(x)

Using a trade-off function determined by N (0, 1) and N'(u, 1),
we have the following charaterization [24].

Definition 8. A mechanism M is u-GDP if for all « € [0, 1],
T(M(D), M(D"))(e) > ®(® (1 — a) — p)

for all neighboring datasets D, D’ where ® is the standard
normal CDF.

C. Confidence Intervals for f-DP

By using empirical upper bounds for « and 3, obtained
using, e.g., the Clopper—Pearson intervals or Jeffreys intervals,
and Def. [8| we may obtain an empirical lower bound for the
GDP parameter p as

lower __ (1371(1 o 5&) . @71(5)

plowe (IL4)

We remark, however, that this estimation of p using a point-
wise estimate (&, 3) may lead to false (£, §)-lower bounds in
case the privacy profile of the mechanism deviates significantly
from that of a Gaussian mechanism.

The work [8] proposes also to use the credible intervals for
€ as a basis for the confidence interval estimation in f-DP. This
approach is based on a certain Bayesian estimation of e-values
proposed in [25]. Therein, given the estimated FP and FN-
values of the attack, a posterior distribution urpr rnr) (@, )
is defined as

u(FPRJ?NR) (a, ,8) :Beta(a; 05 + FN, 05 + N — FN)
Beta(3;0.5 + FP,0.5+ N — FP)

A trade-off curve f is then determined to give an f-DP
guarantee with confidence ¢, where c is the probability mass
of the posterior distribution uppgr,rnr)(, 3) in the privacy
region determined by f, i.e., between the curves f(«) and
1—f(1-a), a € [0,1). The confidence value ¢ is then
determined by the cumulative distribution function

1 1-f(1-a)
= [

0 Sl
which gives the mass of the distribution wpr rnr)(a, )
in the privacy region determined by the trade-off function f.
Finding a suitable trade-off curve using the integral (IL.5) is
difficult for several reasons and we remark that the work [8]]
mostly uses in its experiments the GDP estimate where &

and 3 are obtained either using the Clopper—Pearson estimates
or Bayesian estimates using the approach of [23].

uppR,FNR) (@, B) dfda (IL.5)

ITI. DIFFICULTIES IN AUDITING WITH f-DP

As shown in [8]], the success of threshold inference based
1-GDP auditing does not depend on the value of the threshold
in case P ~ N(1,0?) and Q ~ N(0,0?). Asymptotically, we
then have that for a threshold value z € R, a =1 — & (ﬁ)
and 3 =& (Z_l), and for all z € R,

p=2e"1-a)-271(p).

However, while the relation ([ILI)) and the threshold indepen-
dence hold for P and @ that are exactly Gaussians with an
equal variance, they do not hold for general distributions and in
general finding the GDP parameter accurately requires tuning
of the threshold parameter z. To illustrate this, consider the
example given in [8]: let P ~ ¢-N(1,02)+ (1 —q)-N(0,0?)
and Q ~ -N(0,0?), where 0 = 0.3 and ¢ = 0.25. Using
accurate numerical calculation of the privacy profile §(e) =
max{He: (P||Q), He- (Q||P)} and numerical optimization,
we find that the pair (P, Q) is u-GDP for p ~ 1/0.404 (see
Appendix Figure [T3).

Figure [I] shows the i-value estimated using equation ([ILI)).
Clearly, the threshold independence of the u-GDP auditing
does not hold for non-Gaussian distributions. Also, we experi-
mentally find that the largest p-estimate require large threshold
values (very small FPRs) so that the confidence intervals easily
become large and we are not able to get close to the accurate
p-values even when using n = 10° samples. Also, as we
see, finding a suitable value for the threshold value z requires
careful tuning as the p-estimation is z-independent only for a
pair of Gaussian with equal variance.

(IIL1)

2.5
2.0
1.5
1.0
0.5 1
0.0- —— Estimated u-lower bound
Accurate u
-10 -05 00 05 1.0 15 20
Threshold value z
Fig. 1. Adjusting the p-GDP parameter for the pair of distributions P ~

q-N(1,0%) + (1 —q)-N(0,0%) and Q ~ -N(0,5?) using a threshold
attack with threshold value z € R. The figure shows the estimated p-value as
a function of z. Each p-lower bound value is estimated using the Clopper—
Pearson confidence intervals and n. = 10* samples from both P and Q.

In the general case, such as when carrying our f-DP
auditing of the subsampled Gaussian mechanism, one has to
use the formula ([L3). The first major difficulty with using
the integral one encounters is in the case when auditing



mechanisms determined by more than one parameter. For
example, when auditing the subsampled Gaussian mechanism,
the potential f-curves are parameterized by two parameters, g
and o. Thus, given only the observations, it is not obvious how
to adapt ¢ and o to obtain high-confidence privacy regions for
the posterior distribution urpr,rNr) (<, B) as both of these
parameters will affect the shape of the trade-off function f. If
one is focused on point-wise (¢, §)-DP estimates one may end
up with wildly different f-DP guarantees: as demonstrated
recently in [26], two mechanisms can have wildly different
privacy profiles while having the same point-wise (&, )-DP
guarantees.

The second difficulty one quickly encounters with the for-
mula is the numerical approximation. The formula
which does not seem to exhibit analytical solutions even in the
simplest cases (e.g., 41~-GDP estimation). Therein, one specific
issue that requires careful attention is that even the f(«)-
curve that determines the boundary of the privacy region may
not have analytical expression but has to be approximated
numerically. This is the case, e.g., in case f is a trade-
off curve of the subsampled Gaussian mechanism, where
we approximate it using Algorithm (I} However, the biggest
difficulty seems to arise from the numerical stability of the
integration.

We demonstrate the difficulty of the numerical f-DP au-
diting with an example where we are auditing the one-
dimensional distributions P ~ q-N(1,02)+(1—q)-N(0,02)
and Q ~ N(0,02) where ¢ = 0.25 and ¢ = 0.3. We
consider a situation where the auditor is given the value of ¢
and is trying to determine the upper bound f-trade-off curve
by scaling ¢ and by using a numerical approximation of the
integral ([L3). The posterior distribution wppg Fnr) is con-
structed using threshold membership inference and n = 10°
samples from both P and (). To reduce the influence of the
numerical integrator on our conclusions, we use two different
numerical integration methods: we use the dblquad-integrator
included in scipy.integrate library [27] and a simple two-
dimensional Euler method. For a given value of o, we compute
an approximation of the accurate f-DP curve of the subsam-
pled Gaussian mechanism using Alg. [[with 200 points and
estimate the true f-function by a piece-wise linear function
constructed using these points. The privacy region estimated
using this approximated f-curve is given as an integral region
for the dblquad-integrator. When o = 0.35, both integrators
correctly indicate that the f-curve is an upper bound for the
privacy region (Fig. [2). However, when o = 0.29, we can still
find threshold values for which both integrators would deem
the privacy region to be under the f-curve, which is clearly a
wrong conclusion (Fig. [3).

IV. HISTOGRAM-BASED AUDITING OF DP GUARANTEES

We next present our histogram-based DP auditing method
that does not require any a priori information about the
underlying DP mechanism.

Test for fla) with g =0.25, 0=0.35

.07 X —— Simple Numerical Integral
dblquad method of Scipy
0.8
Z 0.6
=
a
O 0.4+
0.2
0.0 x % % * x
0.2 0.4 0.6 0.8 1.0

Threshold value z

Fig. 2. Estimate of the cumulative density function P-(-), i.e., the probability
mass of the posterior distribution u(rpR, FNR) (v, B) inside the privacy region
determined by the trade-off function f of the subsampled Gaussian mechanism
with sampling ratio ¢ = 0.25 and noise parameter o = 0.35. Using a
threshold value between -0.75 and 0.2 would lead us to conclude with high
confidence that the mass of u(rpR FNR) (a, B) is inside the privacy region.
While this would lead to a correct lower bound for the DP parameter ¢, it
would give an inaccurate approximation of the true trade-off function.

Test for fla) with g =0.25, 0=0.29

1.0 = —¢— Simple Numerical Integral
dblquad method of Scipy
0.8 1
= 0.6
=
fa
O 0.4+
0.2 1
0.0+
0.2 0.4 0.6 0.8 1.0 1.2

Threshold value z

Fig. 3. Estimate of the cumulative density function P-(-), i.e., the probability
mass of the posterior distribution w(ppRr, FNR) (@, B) inside the privacy region
determined by the trade-off function f of the subsampled Gaussian mechanism
with sampling ratio ¢ = 0.25 and noise parameter ¢ = 0.35. Using a
threshold value between -0.75 and 0.2 would lead us to conclude with high
confidence that the mass of u(rpR,FNR) (a, B) is inside the privacy region.
While this would lead to a correct lower bound for the DP parameter ¢, it
would give an inaccurate approximation of the true trade-off function.

A. Problem Formulation

Similarly to the hypothesis testing formulation of DP pre-
sented in Section [l our method is based on a general
problem formulation, where the privacy profile of the un-
derlying DP mechanism M dominates the privacy profile



h(a) = Hq(P,Q) determined by some distributions P and
(@ and we have a number of independent samples from both
P and Q. Then, having an estimate (or high-confidence lower
bound) for h(a)) will also give a lower bound for the privacy
profile of M.

We can motivate this formulation for example via black-box
auditing of an ML model training algorithm M as follows.
Let # € R? denote the ML model parameters, F'(f, ) the
forward mapping for the feature x of a data element z =
(z,y), where y denotes the label, and let /(F (6, z), y) be some
loss function. Then, in case the mechanism M is (g, d)-DP,
by the post-processing property of DP, the distributions

P=1((F,2),y), 6~M(DUz2),
Q= E(F(@,at),y), 0 ~ M(D)

are (g,0)-close to each other, i.e. Ho-(P,Q) < 6.

We next show how to lower bound the privacy profile h(c)
using histogram density estimates of the distributions P and Q).
Notice that in particular, P and () are not dominating pairs
of distributions for the mechanism M; on the contrary, the
privacy profile of M dominates the privacy profile h(a) =
H,(P,Q), a > 0.

av.1)

B. Estimating Hockey-Stick Divergence Using Histograms

We estimate the distributions P and () by first sampling n
samples from P and n samples from (), and then using binning
such that we place the score values into k bins, each of given
width h > 0. Denote these samples by Pg = {Py,..., P}
and Qs = {Q1,...,Qn}. Notice that we could use an
adaptive division of the real line to generate the bin, however
we here focus on equidistant bins for simplicity. Also, we
could consider drawing a different amount of samples from P
and . Given left and right end points a and b, respectively,
we define the bin j, j € {2,...,k — 1}, as

Binj =[a+(j—1)-h,a+j-h)

and

Bin; = (co,a + h), Bing = [b — h,00).

We define the probabilities p; and g¢;, j € [k], by the relative
frequencies of P’s and ’s samples hitting bin j:
1
pj - {z € Ps : = € Bin,}|,
1 .
qj<—ﬁ|{1:€Qg : x € Bin;}|.

Denote these estimated discrete distributions with probabilities
p; and g;, j € [k], by P and @, respectively. Then, we estimate
the parameters of the mechanism M by using the hockey-
stick divergence He-(P||Q), ¢ € R. This is motivated by the
following observation.

Lemma 9. Denote the limiting distributions by P and @ ie.,

P; = P(t) dt,

Bin;

and @j = Q(t) dt

Bin;

for all j € [k], where P(t) and Q(t) denote the density
Sfunctions of P and Q, respectively. Then, for all € € R:

Hes(ﬁ7@) S Heg(Pa Q)

Proof. The distributions P and @ are obtained by applying
the same post-processing function to P and ) and the claim
follows from the data processing inequality. [

To obtain a high-confidence lower bound for the hockey-
stick divergence He-(P, ), the challenge is then how bound
the error in the estimate H,-(P||Q). We next show how to
obtain frequentist confidence intervals for this estimate.

C. Confidence Intervals for Histogram-Based e-Estimates

We consider frequentist confidence intervals, and thus by
definition a (1 — «)-confidence interval will contain the true
parameter with (1 — )% of the time the estimation is carried
out.

An important observation here is that the counts of samples
hitting bins,

{z € Ps : = € Bin;}| and

H{r € Qs

J € [k], are independent draws from multinomial distributions
with k events and event probabilities P and @, respectively.
Denote the set of possible multinomial probabilities for the
discrete set X by

AX)={peRE] : [|p], =1}.

To obtain confidence intervals, we use the following high-
probability bound for the total variation distance given in [28].

S Bil’lj}‘,

Lemma 10. Consider the empirical distribution p obtained by
drawing n independent samples s1, . . . , s, from the underlying
distribution p € A([k]):

1 . .
Di = ﬁHSE {s1,---,8n} : s=14}|, i€lk]
Then, as long as
k2 2
n > max<{ —,—log— ¢,
720 12 y
we have that with probability at least 1 — 7,

TV(p,p) <.

It is evident that by choosing n as guided by Lemma [T0}
the interval [p— 7, p+ 7] will be a 100% - (1 —+) - confidence
interval for the TV distance estimate. Notice that for fixed k,
Lemma|l10limplies that the error of the estimate in TV-distance

is essentially upper bounded % We remark that by results
of [29], in expectation, the TV-distance error of the estimate

behaves as (2 \/% so the bound is optimal in this sense.

We can use the confidence intervals for TV distance also
to obtain high-confidence lower bounds for other parts of the
privacy profile using Alg. [3] via the following result which is
also given in [30].



Lemma 11. Denote P, Q) probability distributions on the same
probability space. Suppose

TV(P,P)<T

and

TV(Q,Q) <7
for some T > 0. Then, for all € € R,

Ho-(P,Q) < Ho-(P,Q) + (1+e°) -7

For obtaining high-confidence f-DP upper bounds, our
strategy is to determine the high-confidence lower bounds
for the privacy profile using Lemma and then convert
these lower bounds to trade-off functions using Lemma[7} We
remark that rigorously, this approach does not give a high-
confidence f-DP upper bound. Due to the convexity of the
trade-off functions, using point-wise upper bounds for the
privacy profile would give a high-confidence lower bound for
the trade-off function, however for the upper bound we would
need to use an approach similar to that of [31], where they give
an optimistic numerical approximation of the privacy profile
that strictly lower bounds the true privacy profile. We believe
however that the effect would be small and in experiments
we simply use as a high-confidence upper bound the trade-off
function approximated using Lemma

D. Convergence Result for the Hockey-Stick Divergence Esti-
mate

The density estimation using histograms is a classical prob-
lem in statistics, and existing results such as those of [32]]
can be used to derive suitable bin widths for the histograms.
We also mention the work [33] which gives methods based
on kernel estimation theory and the work [34] which gives
binning based on a Bayesian procedure.

Consider the approach and notation of Section except
that for the theoretical analysis we consider an infinite number
of bins and focus on find the optimal bin width h. Le., we
define the bins such that for j € Z,

Bin; = [j-h,(j +1)-h),

and place the n randomly drawn samples from P and Q
into these bins to estimate the probabilities fB (z)dzx
and me x)dx using the bin-wise frequencies of the his-
tograms. If we denote the piece-wise continuous density
function as

P(z) = Pj/h,
then the analysis of [32] gives an optimal bin width for mini-
mizing the mean-square error E(P(z) — P(z))? for a density
function P(x) with bounded and continuous derivatives up to
second order (and similarly for ()). We can directly use this
result for analysing the convergence of the numerical hockey-
stick divergence H.- P| |Q) e € R, as a function of the
number of samples n.

when =z € Biny,

Theorem 12. Let P and Q) be one-dimensional probability
distributions with differentiable density functions P(x) and

Q(z), respectively, and consider the histogram-based density
estimation described above. Draw n_ samples both from P

and @, giving density estimators P = (P1,...,P;) and
Q = (Q1,...,Qx), respectively. Let the bin width be chosen
as

< 12
Jp P'(x)? de + [, Q'(x)2d

where P'(z) denotes the derivative of the density function
P(z) and similarly for Q. Then, for any o > 0, the numerical
hockey-stick divergence H(P||Q) convergences in expecta-
tion to H,(P||Q) with rate O(n="/3), i.e.,

H,(P||Q)

where the expectation is taken over the random draws for
constructing P and Q.

Remark 13. In the proof of Thm. the number of bins k is
chosen to minimize the approximation error and is O(n'/?). In
that case, Lemmas andgives the same order O(n’l/g).

hp =

% 1
> n"3,  (IV.2)
xr

— Ho(P||Q)| = O(n~/3),

In case P and () are Gaussians with an equal variance, we
directly get the following from the expression ([V.2).

Corollary 14. Suppose P and () are one-dimensional normal
distributions both with variance 2. Then, the bin width hy, of

Eq. (IV.2) is given by

h, =2.31/3.71/6 -1/3

-o-n (Iv.3)

We may use the expression of Eq. (IV.3) for Gaussians as a
rule of thumb also for other distributions with o denoting the
standard deviation.

E. Pseudocode for Histogram-Based Estimation of DP-
Guarantees

The pseudocode for our (¢, §)-DP auditing method is given
in Alg. [3] Notice that in in order to find a suitable bin width h,
we may also estimate the standard deviations of the samples
Ps and Qg. This is also motivated by the experimental
observation that the variances of the score values for auditing
training and test sets are similar. Then, having an std estimate
o, we could set the bin width A = 3.5 - n=1/35 which
approximately equals the expression ([V.3)).

F. Pseudocode for Histogram-Based Estimation of Trade-Off
Functions

We next show how to obtain high-confidence lower bounds
for the DP guarantees using Alg. [3| We first obtain point-wise
high-confidence lower bounds for the privacy privacy profile,
we use Alg. 3] combined with Lemmas [IT] and [I0] Notice that
given the number of samples n, number of bins k£ and v > 0,
the error estimate 7 is given by Lemma [T0] as

m{ﬁ/l/}



Algorithm 3 Estimation of (e, )-DP parameters Using His-
togram Density Estimation

Input: n indepedent samples from the distributions P
and Q: Ps = {P,...,P,} and Qs = {Q1,...,Qn},
DP parameter 6 € (0,1). Number of Bins k&, end points
a,beR.

Set the bin width h = 272

Divide the real line into k disjoint intervals such that for
je{2,....k—1},

Binj=[a+(j—1)-h,a+j-h)

and Bin; = (00,a + h) and Bin, = [b — h, c0).
Estimate the probabilities p; and g;, j € [k], by the relative
frequencies of hitting bin j as

1 .
pjeﬁ|{x€PS:x€B1nj}|,

1 .
qj<—g|{x€QS : « € Bin, }|

giving the discrete-valued distributions
P={p}f, and Q= {ai}i,

Set: § + H.-(P||Q).

return J.

Algorithm 4 Computation of High-Confidence Lower Bounds
for (g, §)-DP parameters Using Histogram Density Estimation

Input: »n independent samples from the distributions P and
Q: Ps = {Py,...,P,} and Qs = {Q1,...,Qn}, grid of
e-values {e1,...,&,,} to construct the trade-off function,
confidence parameter v > 0.

Compute TV distance error: 7 = max { \/g A/ 21%7]2/7}

for i€ [m]:do
Estimate He«; (Ps||Qs) using Alg.[3| giving an estimate
Ji.
Subtract T from §; to get (1 — +)-lower bound:

0; < max{0,0; — (1 +¢€°) - 7}.

end for

Using the points {(¢1,61),...,(Em,0m)}, determine the
trade-off function using Alg.

return f(x).

Thus obtained é-lower bounds are then further converted to
a trade-off function using Alg. The pseudocode for this
procedure is shown in the pseudocode of Alg.

Remark 15. AlgorithmH|is also related to the property testing
algorithm by [30] (their Algorithm 2) which test whether a
discrete-output mechanism is at least (¢, 0)-DP for pre-defined
€ and 6. Their algorithm rejects at least with probability 2/3
in case the §-estimate for given ¢ is more than a-far from the
true estimate where « is a pre-defined parameter.

The sample complexity of Algorithm 2 of [30] as a function
of k and « is asymptotically the same as in our method,

as implied by our Lemmas and However, the sample
complexity given by their Theorem 14 is stated only as a big-O
result. We provide an explicit bound for the required sample
size which leads to high-probability confidence intervals for
the estimates, providing a practical method for evaluating
an estimate and a confidence interval for the hockey-stick
divergence. This allows obtaining a high-confidence lower
bound for the privacy profile and an upper bound for the trade-
off functions. Also, one clear difference is that we introduce
the binning for continuous-output distributions which allows
auditing, e.g., ML model training algorithms.

V. RELATION TO EXISTING WORK ON THRESHOLD
MEMBERSHIP AUDITING

As we next show, the commonly considered membership
inference attacks can be seen as a special case of our auditing
method. Suppose we have two distributions P and () which
give distributions to some score values originating from a
dataset with and without a given sample z (e.g., as in the
black-box setting described in Eq. (IVI)), and suppose that
we are given some a fixed threshold 7. We infer that a sample
originates from a dataset with the sample z in case it is below
7. This gives the true positive ratio (TPR) and false positive
ratio (FPR)

TPR=P,.p(z2<7),

V.1
FPR=P,. (2 <T). v-D

We can interpret the (e, §)-estimates given by this threshold
membership inference as the (e, §)-distance between two-bin
approximations (bins defined by the parameter 7 € R dividing
the real line into two bins) of the distributions P and Q.

Let P and @) denote the two-bin histogram approximations
of P and @, respectively, where the bins are determined by
the threshold parameter 7. The following lemma shows that
the (e, 6)-distance between P and () exactly matches with the
expression commonly used for the empirical e-values.

Lemma 16. Consiger the discrete-valued distributions P =:
(TPR,FNR) and Q =: (FPR, TNR). Assume TPR > FPR.
Let § € [0, 1] such that

maX{Heg(ﬁH@),Heg(@Hﬁ)} =4

for some € > 0. Then,

FPR ' °®  FNR (v-2)

By the post-processing property of DP, we directly get the
following corollary.

~ { TPR — 9 TNR—&}
€ = max 1 log

Corollary 17. Suppose the underlying mechanism M is (g, 9)-
DP for some ¢ > 0 and 6 € [0,1]. Then, asymprotically,
€ = max {10g TFPE‘;; ,log Tgll\?g‘s , O} gives a lower bound for
E.

The e-estimate of Eq.(V.2) was originally considered in [[12]
and it is the commonly used formula for obtaining (g,0)-
DP lower bounds via success rates of membership inference
attacks. It follows also directly from the characterization given



in [18]. Our novelty is to generalize the auditing based on
Eq.(V:2) such that we consider histograms with more than two
bins, and instead of estimating TPRs and FPRs, we estimate
the relative frequencies of the scores hitting each of the bins
and then measure the (¢, 0)-distance between the approximated
distributions corresponding to the score distributions of the two
auditing sets.

As an example, suppose that we have a division of an
interval into 2F bins, k € N, denoted Dy, such that half of
the bins are right to the threshold 7 and half of them are left
to 7 and suppose the division Dy is obtained by dividing
each interval of Dj in half. Then, by the post-processing
property, the asymptotic distributions P and (); obtained
using the histogram Dy, can be seen as a post-processing of the
distributions Py and Q41 (simply sum up the probabilities
of adjacent bins) and therefore the finer the division the closer
the (e, d)-estimates get to the actual (g, d)-distance between
the distributions of the scores.

Following the discussion of [35], we see that our approach
is also related to the exposure metric defined in [36]. Given n
auditing training samples {c;}?_; and n auditing test samples
{ri}1,, [36] defines the exposure of a sample ¢; via its rank

Exposure(c¢;) = logy n — log, rank(c;, {r; }i;),

where rank(c;, {r;}"_;) equals the number of auditing test
samples with loss smaller then the loss of ¢;. As shown in [35]],
a reasonable approximation for the the expected exposure is
given by the threshold membership inference (i.e., a two-
bin histogram approximation desribed above) with threshold
parameter 7 = fedian, Where fyedian 18 the median value of
the losses of the auditing training samples, i.e., the median
of {¢(c;)}. This leads to the e-estimate given by Eq. (V.2)
with
TPR = wa{ci}?zl ([(SE) < gmedian)

and
FPR = Porriyr, (U(2) < lmedian) -

We remark that the auditing training and test sample scores
would generally need to be independent to conclude that the
estimate of Eq.(V:2) gives a lower bound for the actual (e, §)-
DP guarantees.

VI. NUMERICAL TOY EXAMPLES

Next, we give numerical examples to illustrate the
histogram-based estimation presented in Section

A. Numerical Example: Estimating TV Distance Between Two
Gaussians

We illustrate our approach for estimating the (e, §)-distance
between two one-dimensional Gaussians. The example also
illustrates the effect of the bin size. Let o > 0. We draw n ran-
dom samples 1, ...,, from the distribution P ~ N(0,0?)
and n samples y1, . . ., y,, from the distribution Q ~ N'(z, 0?).
We know that P and Q are (e, d(¢))-distinguishable, where
d(e) denotes the privacy profile of the Gaussian mechanism
with noise scale ¢ and sensitivity 1 and in particular we know

by Lemmal3|that the total variation distance TV (P, Q) is given

by
5(0) =2 (1_<1>(210)>,

where ® denotes the CDF of the standard univariate Gaussian
distribution. We determine @ and b such that x;’s and y;’s
are inside the interval [a,b] with high probability and fix
the number of bins N € N, and carry out the TV distance
estimation using Algorithm [3] (i.e., using ¢ = 0). Figure F
illustrates the accuracy of the TV distance estimation as the
number of bins /N varies.

(VL1)

—— Exact TV-distance
0.351 Algorithm 2, nr. bins k= 10
------- Algorithm 2, nr. bins k= 63
0.301 —-— Algorithm 2, nr. bins k= 200
& 0.251
@
g 0.20 1
0.151
0.10
1 2 3 4 5
o

Fig. 4. Exact TV distance TV (P, Q) and the TV distance approximated
using Alg. |3| for different values of o, when n = 50000. The bin width h,,
set using Eq. gives k = 63 bins.

As also suggested by the upper bound of Lemma [T}
Alg. [3]is most accurate for the hockey-stick divergence with
e =0, i.e., for the TV-distance. We show in Appendix [J] also
results for estimating the hockey-stick divergence with ¢ = 1.
Those results also illustrate that there is possible room for
improvement in the bound of Lemma|[TT] Improving the bound
of Lemma [IT] would directly improve the sample complexity
of obtaining high-confidence lower bounds with Alg.

B. Numerical Example: Auditing the Subsampled Gaussian
Mechanism

In [8] an open problem of how to accurately audit the
subsampled Gaussian mechanism is posed. The concrete ex-
ample of [8] is given by the pair of distributions P ~
q-N(1,0%) +(1-q)-N(0,6%) and Q ~ N(0,0?) with the
parameter values ¢ = 1/4 and o = 0.3. Figure [5] replicates
the experimental results given in [8]], however, it includes the
trade-off function estimated using Alg. |3| The accurate trade-
off curve is computed using numerical privacy accounting
method of [20] and Alg. [} We see that the histogram-based
method is able to accurately estimate this trade-off curve.

C. Numerical Example: Auditing the Laplace Mechanism

The Laplace mechanism adds Laplace distributed noise
to a function with limited L;-sensitivity, and the (e, d)-DP
privacy guarantees are determined by a dominating pair of
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Fig. 5. Estimating the trade-off function of the subsampled Gaussian

mechanism with ¢ = i and o = 0.3. The histogram-based auditing method
is able to accurately estimate the trade-off function without any information
about P and Q. We sample n = 106 samples from both P and Q.

distributions P ~ Lap(0,A) and @ ~ Lap(Ay, A), where A4
is the Li-norm sensitivity of the underlying function and A
denotes the noise scale. In [24] it is shows that the accurate
trade-off function of the Laplace mechanism is given by

T (Lap(0, A), Lap(Ay, A)) (@) = F(F~' (1 — ) — p)

where ;1 = A/A; and F' denotes the CDF of Lap(0,1) (see
Appendix for the exact analytical form).

Figure [6] shows that the binning-based method is able to
accurately estimate the exact trade-off function without any
information about the underlying distributions. To compute
the trade-off functions, we use k = 10° samples and 100 bins.
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0.6

Q

0.4

0.21

0.0

0.0 0.2 0.4 0.6 0.8 1.0
a
Fig. 6.  Estimation of the trade-off function of the Laplace mechanism

with noise scale A = 1.0 and sensitivity A; = 1.0. The histogram-based
auditing method is able to accurately estimate the trade-off function without
any information about P and @Q. We sample n = 10° samples from both P
and Q.

VII. EXPERIMENTS ON NEURAL NETWORKS

We illustrate the effectiveness of our method in ML model
auditing in both black-box and white-box settings.

A. Experiments on Black-Box Auditing

To obtain the black-box auditing samples, we consider the
method used in [§] and depicted in Alg. 5] By using an
auditing sample z’, we draw n samples of the loss function
evaluated on a model that is trained on a dataset D that does
not include 2z’ and n samples on dataset D’ = D U 2’. In all
experiments, we draw n = 105 samples for both D and D’.

Algorithm 5 Black-box auditing method for DP-SGD.
Input: Training dataset D, loss function /¢, canary input
(2',y"), number of observations T'.

Observations: O — [], 0" — ).

Set: D' =D U{(«,y)}.

for t€[n]: do
6 — M(D) (DP-SGD on the dataset D).
6" — M(D’) (DP-SGD on the dataset D’).
Olt] — (6, (2,y)).
O'lt] = £(¢0, (2, y)).

end for

return O,0’.

We first consider a one hidden-layer feedforward network
for MNIST classification [37], with hidder-layer width 200.
We minimize the cross-entropy loss, and the clipping constant
C is set to 1.0. We train the models with a random subset of
1000 samples from the training split of MNIST. As a base-
line method we consider the u-GDP auditing method of [§]]
that uses threshold inference and Clopper—Pearson confidence
intervals for the FPR and FNR estimates. We choose the
threshold parameter as the mean of all loss values. We remark
the -GDP auditing method gives rigorous (e, §)-bounds only
in case the two distributions P and ) are equal-variance
Gaussians, and in that case the p-estimate is independent of
the threshold (in the limit as the number of samples grows).
We also use our histogram-based method of Alg. ] and set
the number of bins k& = 15 which, by Lemma. {10} gives
approximately 99.9% confidence intervals for the TV distance.

Figures [7] and [§] show the histograms of the losses and the
resulting trade-off functions, when the additional sample 2’
is chosen randomly from the rest of the MNIST training data
and the models are trained using the Adam optimizer [38] with
the initial learning rate 0.001 for 50 epochs. Here the ;-GDP
accounting is justified and actually gives similar estimates
and high-confidence upper bounds for the trade-off functions
as Alg. [ Notice that the reported trade-off curve upper
bounds correspond to high-confidence lower bounds for the
DP parameters which explains the legends.

Figures [0] and [I0] show the histograms of the losses and
the resulting trade-off functions, when 2’ = (a/,y’) is chosen
such that the feature z’ is a random vector scaled to have
similar norm as other samples and the models are trained
using DP-SGD for 5 epochs with the learning rate 0.1. The
histograms are far from being equal-variance Gaussians, and
thus p-GDP auditing with a single FNR-FPR estimate does not
necessarily lead to valid (e, §)-DP lower bounds. However, we



show the resulting trade-off functions for comparison, and see
that Alg. [4] gives much lower trade-off curves (meaning higher
(e, 6)-lower bounds).

We consider a similar setting for the binary classification
dataset ”Synthetic H” considered in [39] which has feature
dimension 5000. We consider a one hidden-layer feedforward
network with hidder-layer width 80 and minimize the cross-
entropy loss, and the clipping constant C' is set to 1.0. We
choose as training data random 1000 samples and 2z’ = (z', /)
such that the feature z’ is a random vector scaled to have a
similar norm as rest of the samples. Figures [TT] and [I2] show
that the histograms are very far from being Gaussians and that
Alg. [ gives much more accurate trade-off functions.

MNIST, DP-Adam, 50 Epochs

[ Losses for D'
Losses for D
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0.4 0.6 0.8 1.0 1.2 1.4

Fig. 7. Histograms of the loss function values ¢(6,z) at the end of the
training, when the model 6 is trained using a) a dataset D and b) dataset
D’ = DU {(z',y’)}. The empirical distributions look like Gaussians with
approximately an equal variance.

MNIST, DP-Adam, 50 Epochs
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Fig. 8. Estimated 99.9 % - upper bound trade-off curves obtained using a) the
thresholding and ;-GDP and b) the histogram-based method using Alg.[3] The
empirical distributions of the losses are almost like Gaussians, which explains
the fact that u-GDP auditing gives almost equally good estimates.

B. Experiments on White-Box Auditing

Lastly, we propose a heuristic white-box auditing method to
estimate the privacy loss distributions of the underlying model
training mechanism that can also be used to obtain estimates

MNIST, DP-SGD, 5 Epochs
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Fig. 9. Histograms of the loss function values ¢(0,z) at the end of the
training, when the model 6 is trained using a) a dataset D and b) dataset
D’ = DU {(2',y’)}. The empirical distribution deviate markedly from
Gaussians.
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Fig. 10. Estimated 99.9 % - upper bound trade-off curves obtained using a)
the thresholding and p-GDP and b) the histogram-based method using Alg.
The empirical distribution deviate markedly from Gaussians, which explains
the fact that p-GDP auditing fails to capture the accurate lower bound.

Synthetic H, DP-SGD, 5 Epochs
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Fig. 11. Histograms of the loss function values £(6,x) at the end of the
training, when the model 6 is trained using a) a dataset D and b) dataset
D’ = DU {(z',y")}. The empirical distribution deviate markedly from
Gaussians.

for compositions, without any a priori information about the



Synthetic H, DP-SGD, 5 Epochs
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Fig. 12. Estimated 99.9 % - upper bound trade-off curves obtained using a)
the thresholding and 1-GDP and b) the histogram-based method using Alg. [3|
The empirical distribution deviate markedly from Gaussians, which explains
the fact that ;-GDP auditing fails to capture the accurate lower bound.

parameters of the training algorithm.

In [8] white-box auditing is carried out using Alg. [[] given
in Appendix, such that the canary gradient is added with
probability 1 at each iteration, i.e., the auditing neglects the
effect of subsampling. Having an estimate of the u-GDP
parameter gives then estimates of the so-called dominating
pairs of distributions for the subsampled Gaussian mechanism
in case the subsampling ratio g is known. Using these, one
can construct numerical privacy loss distributions (PLDs) and
using FFT-based accounting methods [20], [6] furthermore
compute empirical §(g)-bounds also for compositions.

We consider the same setting of white-box auditing, how-
ever, we include the canaries with the same probability as other
gradients, and we carry out numerical estimation of the PLDs
by estimating the distributions of inner product values in Alg. [[|
using histograms, i.e., we calculate the discrete probabilities
P and @ as in Alg. , and then get the discrete-valued PLDs
w55 and w5, B such that for j € [k],

~

P (wﬁ/@ = log g]) =P;
and N

P (w@/ﬁ = log %j) = @j.
We approximate the PLDs of a c-fold composition of the

mechanism then by PLDs w35 and w% /P that are given
by c-fold self-convolutions of distributions wz /0 and wa,ps
respectively, and obtain an estimate 6~(e) of the privacy profile

() of the c-fold composition of the mechanism as
N — E ~wl 1 _ E—S
5(6) = max{Epmu [1 -0

JL—e

The convolutions and the integrals are evaluated using
the numerical method of [20].

Figure |13| shows results for a one-dimensional toy problem,
where P ~ ¢-N(1,02)+(1—¢q)-N(0,02) and Q ~ N (0, 0?)

(VIL1)

Eswa%/

with the parameter values ¢ = 1/2 and 0 = 2.0. We draw
n = 10% random samples from both P and Q. We compute
the 6(g)-bounds for ¢ = 10 compositions and the accurate
bounds are computed using the method of [6].

Similarly, Fig. [I4]shows results for white-box auditing using
Alg. [I] for the feedforward neural network, using a random
subset of 1000 samples from the training split of the MNIST
dataset. We use random normally distributed canaries and draw
a new random canary vector at each step. We train 10° models,
each for 10 epochs, with a batch size of 500 and noise scale
o = 2.0. We concatenate all the scores, giving in total n = 10°
samples from both Ps and Qs from which the histogram-
estimates P and () are constructed.

10764 . .
—— 06(¢) via Estimated PLDs

10-7] ~77° 6(¢g) via Accurate PLDs

T T T T
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Fig. 13. Comparison of the accurate privacy profile d(¢) and the estimated
privacy profile that is computed using the discrete distributions P and Q
obtained from the histogram estimates of P and Q. Here P ~ ¢q-N'(1,02) +
(1 —q)-N(0,02) and Q ~ -N(0,0?), where o = 2.0 and ¢ = 0.5.
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Fig. 14. Comparison of the accurate privacy profile d() and the estimated
privacy profile that is computed using the discrete distributions P and Q
obtained from the histogram estimates of P and (). Here samples from P
and Q are obtained using inner products with random canaries (Alg. [I).

VIII. CONCLUSIONS

We have proposed a simple and practical technique to
compute empirical estimates of DP privacy guarantees that



does not require any a priori information about the underlying
mechanism. We have shown that our method can be seen as a
generalization of the existing threshold membership inference
auditing methods. One limitation of our method is that the
reported c-estimates in the white-box setting are heuristic and
we do not provide confidence intervals for them. To improve
our methods, it would be important to find tighter confi-
dence intervals for estimates of multinomial distributions (see,

e.g.,

[40]). We leave this however for future work. To increase

the computational efficiency, it will also be interesting to find
conditions under which we can circumvent the assumption of
the independence of the auditing score values when carrying
out one-shot estimation and possibly give confidence intervals
for e-lower bounds in that case.
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APPENDIX

A. Numerical Optimization to Find Accurate p-GDP param-
eter

We can numerically compute the p-GDP parameter such
that using the privacy profile

5(e) = max{H,- (P||Q). He: (QIIP)}

where P ~ ¢-N(1,0%)+(1—q)-N(0,0%) and Q ~ -N(0, 02),
we find a value of o for the Gaussian mechanism such that we
search for a point, where the tangent and value of the privacy
profiles 6(g) and dGauss,.(€) are equal. To this end, we solve
numerically the problem

O ][ ]

Given a numerical solution &, the p-parameter is then given by
u = 1/5. Figure [15] illustrates the result of this optimization.

argmin  min,

10—1<
o)
ey 10—2 4
N GM with o = 0.404
10774 Subsampled GM, g = 0.25, 0=0.3
4 5 6 7 8 9
&

Fig. 15. Adjusting the p~-GDP parameter for the pair of distributions P ~
q-N(1,0%) + (1 —q)-N(0,52) and Q ~ N(0,02), where ¢ = 0.3 and
g = 0.25. The tight u-GDP is given by pu = 1/0, where o is the minimal
value such that the the privacy profile of the Gaussian mechanism with noise
scale o is under the privacy profile h(a) = Ha (P, Q). This value can be
found, e.g., by solving the problem (A.I).

B. Proof of Lemma [I]]

Lemma A.l. Denote P,Q probability distributions on the
same probability space. Suppose

TV(P,P) <t

and

TV(Q,Q) <7

for some T > 0. Then, for all € € R,

H.:(P,Q) < Hee(P,Q) + (L +¢°) - 7.



Proof. Using the inequality < [a]4 + [b]4+ that holds for all
a,b € R, we have that

He-(P,Q) = / P(t) — e*Q(1)]; dt

_ / [P(t) — P(t) + 5 (Q(t) — Q(t)
T B(t) - e*0(0)]: dt

< [ 1Pt~ Pro)) a
+er [1G0 - Q). ar
+ / P(t) — e*Q(t)] 4 dt

= TV(P,P) +e°TV(Q, Q) + Heo- (P, Q)
S (1+e€) 'T+Hea(ﬁ7©)'

C. Trade-Off Function for the Laplace Mechanism

The accurate trade-off function of the Laplace mechanism
is given in Lemma A.6 of [24]

T(Lap(0. 1), Lap (s, 1)) () =

1—eta, a<e M/2
e "/4a, e M/2<a<1/2,
e H(1—a), a>1/2,

D. Illustration: Conversion Between the Noise Parameter and
TV Distance for the Gaussian Mechanism

Figure shows the TV distance TV (P,Q) when P ~
q-N(1,0%)+ (1 —q)-N(0,0%) and Q ~ N(0,0?) for three
different values of ¢ and for varying values of o.

Using the conversion from the TV distance to o, we can also
convert the confidence intervals for the confidence interval of
TV (P, Q) in case we know the subsampling parameter q.

10-1

TV-distance

1072

100 125 150 175

g

25 50 75

Fig. 16. Relationship between TV distance TV (P, @) and € when § = 10>
for the Gaussian mechanism.

E. Proof of Lemma [I[6] and Cor.

Lemma A.2. Consider the discrete-valued distributions P =:
(TPR,FNR) and Q =: (FPR, TNR). Assume TPR > FPR.
Let ¢ € [0,1] such that

maX{Heg(ﬁH@),Heg(@Hﬁ)} =4

for some € > 0. Then,

FPR %% “FNR

Proof. Using also the assumptions € > 0 and TPR > FPR,
i.e., TNR > FNR, we have that

H,-(P||Q) = [TPR — ¢FPR], + [FNR — ¢*TNR];
= [TPR — e°FPR],

~ { TPR — 9§ TNR—&}
€ = max < log

and
H.:(Q||P) = [FPR — ¢°TPR], + [TNR — ¢°FNR]
= [TNR — ¢°FNR],..
Therefore,
max{Heg(ﬁ||@),Heg(@||ﬁ2} )
—max{TPR — ¢ FPR, TNR — ¢°FNR}.

Setting the right-hand side of Eq. (A.2) equal to ¢ and solving
for £ shows the claim.

(A2)

O

Corollary A.3. Suppose the underlying mechanism M is
(€,0)-DP for some € > 0 and ¢ € [0, 1]. Then, asymptotically,
TPR -§ o TNR —§ 0

FPR ~ ° FNR

€ = max {log
gives a lower bound for ¢.

Proof. Since P and @ are obtained by applying the same post-
processing to P and (), respectively, by the post-processing
property of DP, we have that in case

max{H,:(P||Q), H.=(Q||P)} = &

for some € > 0, € < ¢ for

~ 1 TPR —§ TNR — ¢
£ = max < log PR og FNR
Otherwise, £€ < 0 and € = 0 gives a lower bound for e. O

F. Proof of Theorem

Theorem A.4. Let P and Q) be one-dimensional probability
distributions with differentiable density functions P(x) and
Q(x), respectively, and consider the histogram-based density
estimation described above. Draw n_samples both from P
and @, giving density estimators P = (P1,...,P;) and
Q = (Q1,...,Qk), respectively. Let the bin width be chosen
as

ol

= (JR Pt [P w)



where P'(z) denotes the derivative of the density function
P(x) and similarly for Q. Then, for any o > 0, the numerical
hockey-stick divergence H,(P||Q) convergences in expecta-
tion to H,(P||Q) with rate O(n~'/3), i.e.,

(n—l/S),

H,(P||Q) — Ha(P||Q)| = 0O

where the expectation is taken over the random draws for
constructing P and Q.

Proof. Define the piece-wise continuous functions ﬁ(x) and
@(w) such that ﬁ(x) = ]Sg/h, if z € Bin, and similarly
for @(m) To analyse the error in the hockey-stick divergence
estimate we can use P(z) and Q(z) since

Ho(PlIQ) =[P —a-Quly

We can bound the divergence Ha(]gH@) as follows (all the
integrals are over the whole R):

(A3)

a\//(@(w) — Q(x))* dz + Ho(P||Q)

<max{1, a} \//

)2 dx

where the first inequality follows from the fact that [a + 5], <
la| + [b]+ for all a,b € R, and the second inequality follows
from the Holder inequality.

Similarly, carrying out the same calculation starting from
H,(P||Q), we have

Ha(PlIQ)

(A.4)
+a / ]Q
+ H(PQ)
< max{1,a} - \//(13(93) ~ P(2))? da
¥ ¢ J@@ - ayras)
+ H(PQ)
From the inequalities (A3) and (&) it follows that
|Ha(PI1Q) — Ha(PIIQ)|
<max{t.a) - ([P - Py owc)é a3)

+( @@ - a2 a) )

Taking the expectation over the random draws from P and
@ and applying Jensen’s inequality to the the square root
function, we get

E|[Ha(PIIQ) ~ Ha(PIIQ)|

< max{1,a} - ((/E(f’(x) — P(2))? dx)

[N

+ ( / E(Q(x) — Q(x))? dx) ) (A.6)
)

. ﬁmax{m}( / E(P(x

1
2

+ [EQ@ - Q)2 dx) ,

where the second inequality follows from the inequality v/a +
Vb < v2va+ b which holds for any a,b > 0. From the

— P(z))*dx



derivations of Sec. 3 of [32] we have that

[EPE) - P@) do+ [BQW - Q@) do
—i+—h2 [/P’ dx-i—/Q
+0 (n + h3>

Minimizing the first two terms on the right-hand side of (A.7))
with respect to h gives the expression of h,, and furthermore,
with this choice h,,, we have that

dx] (A7)

2

/E(]S(x)—P(x))Q da:+/]E(@(x)—Q(as))2 dz =0 (n—) .

which together with the inequality (A.6) shows that

E[Ha(PIIQ) - Ha(PIQ)| = O(n ™).

G. One-Shot Estimation Using Random Canaries

We next show results for one-shot estimation of DP guaran-
tees using random canary gradients. In the white-box setting,
auditing of DP-SGD is often based on the assumption that the
inserted canary gradient is (approximately) orthogonal against
the rest of the per sample gradients [8]. The approach of [10]
leverages the fact that this is approximately obtained by sam-
pling the gradients randomly since the inner products between
random unit vectors diminish as the dimension increases.
In [10] it is shown that by taking the mean and variance of
the inner products between the random canaries and model
parameters, one can infer the (¢,)-DP guarantees and show
that under mild assumptions the guarantees converge to the
correct ones as the dimension d — co. As we show, we can
obtain a similar asymptotic result by applying Algorithm [3]
directly to the samples to estimate the (&, ¢)-guarantees instead
of using means and variances and by assuming the Gaussian
parametric form for the underlying DP noise. To put our
approach into perspective, we consider the same setting as
in Thm. 3.3 of [10].

We first state some required auxiliary results needed for
the main result. Recall first the following result by [41] which
states that maximal angle between n random unit vectors goes
to 5 in probability as the dimension d grows, in case log t =0
(see Thm. 5 in [41]).

Lemma A.S. Let x1,...,x, be independently uniformly cho-
sen random vectors from the unit sphere S%~1. Let d = d,, —
oo satisfy log" — 0 as n — oo. Denote 0;; the angle between
the vectors a;z and x;. Then,

max
1<i<j<n

T

=1 =0
2 ‘

in probability as n — oo.

Looking at the proof of Thm.5 of [41], we obtain the

following convergence speed for maxi<;<;<n ‘0@- — %|

Lemma A.6. Let the assumptions of Lemma hold. Then,

d
logn

- max Gij — I’ — 4.

1<i<j<n 2

Proof. This result corresponds to Corollary 2.1 of [41]. It
can be shown similarly as in Thm.5 of [41], i.e., by re-
placing in the proof of Thm.1 of [42] L, and |p;;| by

maxi<i<j<n ‘eij - g’ and p;;, respectively. O

The convergence of the cosine angles trivially follows from
the Lipschitz continuity of the cosine function.

Corollary A.7. Let x1,...,x, be independently uniformly
chosen random vectors from the unit sphere S*'. Let d =
d, — oo satisfy Og" — 0 as n — oo. Denote p;; the cosine
angle between the vectors x; and x;. Then,

max il =0
112X |pij
in probability as n — oo.

Proof. The results follows from Lemma[A.5]and from the fact
that cosine function is 1-Lipschitz:

m m
lpij| = (@i, zj)| = |cosb;;| = ’cos@ij —cosi‘ < 6;; — 5’

O

We will also need the following result by [43] for the
TV distance between two Gaussians with equal means (see
Thm. 1.1 in [43]).

Lemma A.8. Let i € R ¥y and X be positive definite d x d
matrices, and M1, . . . , A\q denote the eigenvalues of 22_121 —1.

Then,
in<1 § ! A2
min< 1, N

We are now ready to state a result which shows that the
sample of auditing scores converge in TV-distance to a set of
i.i.d. from one-dimensional Gaussian distributions.

TV (N (1, 31), N (1, 22)) <

ND\OJ

Theorem A.9. Denote the auditing training canaries Aqpain =
{z1,...,x,} and the auditing test canaries Agest =
{z1,...,2n}, where x;’s and z;’s are Li.d. uniformly sampled
from the unit sphere SY=1. Let n = w(1) (as a function of d)
and d = w(n3logn). Suppose M is such that for any dataset
D consisting of vectors in R%, X € R? denotes the sum of
the vectors in D, and

MD)=X+ > a+Z Z~N(0,01).

€ Atrain

Let § ~ M(D) and || X|, = o(,/ﬁdgn). Denote the

training and test scores by

~ <$17 9> ~

P = : , Q=
(zn,0)

<Z17 9>

(2, 0)



1]T € R™, we have that

Then, denoting 1,, = [1
P

TV( QV 7N<|:]lon:| 7U2IQTL>> — Oa

as d — oo in probability.

Proof. Denote 0 = X + erA"amx + Z, where Z ~
N(0,021,). We see that for any z; € Atrains

S (z4,0) =] <X—|— Z x+Z>
2€ Agrain (A.8)
=2l X +1+ Z wle+al Z,
€ Agrain, TET;
and for any z; € Atest,
S (zi,0) = <X+ Z a:+Z>
€ Atrain (A.9)
=21 X + Z a4 22
TE€ Atrain
From Eq. (AX8) an[A9] we see that
Pl _crx 4 PO”] +7+CTz
where
C= [Z‘l Tn 21 Z’rb}
and
T T, 1<i<n
) z€Aain, vFT4
T =
> 2l n<i<2n
T€ Atrain

Denote the maximum absolute cosine angle between the
vectors ﬁ,xl,...,xn,zl,...,zn by pmax- We easily see
that pmax has the same distribution as the maximum absolute
cosine angle between 2n + 1 vectors uniformly sampled from
the unit sphere S?~!. Also, we have that for all z; € A¢yain,

T ‘
E T; x| <N Pmax
‘ TE Avrain, TET;

and for all z; € A¢est,

T
x| <n- .
DRI £ LA

Thus,
7]y < V21%2 pra.- (A.10)
Moreover, we have that
1CTX||, < 1X]l, V21 - prmax. (A.11)
Moreover, by Lemma [A.6] we have that
d
e — 4 (A.12)
log2n + 1

as d — oo in probability (since n = w(1) as a function of

d). Combining Eq. (A.12) with the bounds and (A.TT)),

we see that ||7]|, — 0 as d — oo in probability in case d =

w(n®logn) and [|CTX|,

case ||XH2 _O( nlggn)
We then bound using the triangle inequality

()

v (o [§] sr oz (] o))

0
<TV (_10"] L CTZ N ([]10"} 70—21%))

1 1
+TV (CTX +74 [ O"} +C"z, { O”} + CTZ>

(A.13)
We next use Lemma [A-8] to show the convergence of the first
term on the right hand side of the inequality (A.13). Clearly,
since Z ~ N(0,02%1,), we have that CTZ ~ N(0,5%2CTC).
We next use Lemma with =[], 1 = CTC and
Yo = 0%I,,. Denoting A1,..., s, the eigenvalues of the
matrix Y512, = (02I)"'02CTC — I = CTC — I, we have
that

— 0 as d — oo in probability in

2n

2
> =fore |

i=1 _ Z

a,be{z,..., Ty, 21,

§(2n)2 2

pmax °

By the assumption d = w(n3logn) and Lemma and
Eq. (A12) we have that >.7", A2 — 0 as d — oo in
probability, and therefore by Lemma [A8]

(5] ra([i] 1) -

as d — oo in probability.

To show the convergence of the second term on the right
hand side of the inequality (A:T3)), we again use the fact that
||CTC I H » — 0 as d — oo in probability, the unitary
invariance of the total variation distance and the fact that
[7[l, = 0 and |[CTX]||, — 0 as d — oo in probability. ~ [J

(a’b)?
.sZn },a#b

Combining Theorem [A.9] with the convergence result of
Theorem we find that the (e, 6)-distance between the
histogram estimates of P and () also converge to the DP
guarantees of the Gaussian mechanism with noise scale o.

Corollary A.10. Suppose the assumptions of Theorem A9
hold. Denote by P and Q the histogram estimates obtained
from the samples P and Q, respectively, for some division of
the real line. Then, for all € € R, with an appropriate division
of real line, we have that

Hee(P,Q) = Hee (N'(1,0°), N (1,0%))
as d — oo in probability.

Proof. Consider an equidistant division of the real line into
intervals, with some bin width h, and suppose the probability
estimates P and Q are obtained from the histogram estimates



of the samples P and @, respectively. Denote by N; and
Ny the histogram estimates from using n samples from
N(0,02) and N(1,02), respectively. Similarly to the proof
of Lemma [T1] we have that

Heg(ﬁvéj) é HGE(N()le)

. N (A.14)
+ (14 e°)(TV(P,Ny) +TV(Q,Ny)).

We obtain the sequences of masses (P, Q) and (No, Nip) by

applying the same post-processing to the vectors |2

Q
N ( [ ﬂO” } L2, ) , respectively.
Therefore

} and

P

and also, by Thm. [A.9] we have that
TV(P,Ny) + TV(Q, No) — 0

as d — oo. Moreover, by Thm. and the assumption that
n = w(1) as a function of d, we have that H.-(Ny, N1) — 0
as n — oo, for an appropriate choice of the bid width h. Thus,
the claim follows from the inequality (A.14). O

H. Lower Bound for a Single Parameter Using TV Distance

We could in principle use any hockey-stick divergence
to estimate the privacy profile of a mechanism M in case
we can parameterize the privacy profile with a single real-
valued parameter in a way that the privacy guarantees depend
monotonically on that parameter. Consider, for example, the
noise level o for the Gaussian mechanism with sensitivity 1,
where finding the §-value for any ¢ € R will also give a unique
value for o. This kind of single-parameter dependence serves
as a good heuristics for analyzing DP-SGD trained models, as
the privacy profiles for large compositions are commonly very
close to those of a Gaussian mechanism with a given noise
scale [24]. We can give an intuitive explanation for this as
follows.

The privacy loss random variable (PRLV) for compositions
is the sum of the PLRVs of the individual mechanisms in the
composition. By the central limit theorem, this sum converges
in distribution to a Gaussian. On the other hand, the PRLV
for a Gaussian mechanism (GM) is also Gaussian where the
mean 4 and variance o2 are determined by the sensitivity and
the noise scale of the GM, and satisfy a relation 0% = 2u. We
can write the privacy profile §(g) as a certain expectation over
the PLRV w, namely

3(e) = Eu[1-e57%4, (A.15)

see [6] for more details. We see that plugging in to (A.13)
any w that is a Gaussian gives a shifted privacy profile of
some GM. In [24] it is additionally proven that actually for
the sum of PLRVs of the subsampled Gaussian mechanisms,
if the product \/Tq is constant, where T is the number of
compositions and ¢ the subsampling probability, then in the
limit T — oo, also for the resulting distribution the variance

equals two times the mean. Thus, in the limit the PLRV is a
Gaussian that is also a PLRV of some GM.

Thereby, given an estimate of any hockey-stick divergence
between the frequency estimates P and () for an DP-SGD
trained model, we get an estimate of the whole privacy profile
and in particular get an estimate of an e-value for a fixed
d-value. Figure [I6] (Appendix) illustrates this by showing the
relationship between the TV distances and e-values for a fixed
0 > 0 for the Gaussian mechanism, obtained by varying the
noise parameter o. Le., the parameter o is first numerically
determined using the TV distance and the analytical expression
of Eq. and then the e-value is numerically determined
using the analytical expression of Eq. (IL2).

We next analytically show that the choice a@ = 1, i.e., the
TV distance, in fact gives an estimator that is not far from
optimal among all hockey-stick divergences for estimating the
distance between two Gaussians.

1) Optimal Choice of Hockey-Stick: Total Variation Dis-
tance: In principle, we could use any hockey-stick divergence
to estimate the statistical distance between the frequency esti-
mates P and ) and to subsequently deduce the parameter of
the underlying mechanism M. However, experiments indicate
that the TV distance is generally not far from optimum for
this procedure. This is analytically explained by the following
example.

Consider two one-dimensional Gaussians P, ~ N(0,02)
and Q, ~ N(1,0?). We first rigorously show that there
is a one-to-one relationship between the hockey-stick diver-
gence values and o, i.e., that the hockey-stick divergence
H,(P,||Qs) is an invertible function of o for all o € (0, c0)
for all « > 0.

Lemma A.11. The hockey-stick divergence H,(P,||Q.) as a
Sunction of o is invertible for all o € (0,00).

Proof. From Eq. (I.2) we know that

o) = (—loga— L _ 1
Fa(a)—< log & 552 f aloga+20

1 1
—a- (—loga—i— %12) -f(—aloga—Qa>,

(A.16)
where f denotes the density function of the standard univariate
Gaussian distribution. We see from Eq. (A.16) that for o = 1,
the value of F/ (o) is strictly negative for all & > 0. We
also know that if a post-processing function reduces the
total variation distance, it reduces then all other hockey-stick
divergences, since the contraction constant of all hockey-stick
divergences is bounded by the contraction constant of the total
variation distance. This follows from the fact that for any
Markov kernel K, and for any pair of distributions (P, Q) and
for any f-divergence Dy (:||-), we have that D;(PK||QK) <
nrv(K)-D;(P||Q) (see, e.g., Lemma 1 and Thm. 1 in [44]),
where v (K) denotes the contraction constant of K for the

. . _ TV(PK,QK)
TV distance, i.e., nrv(K) = supp g 1v(p,qQ)£0 —PO)
Therefore, F! (o) is strictly negative for all « > 0.



Denote Fy, (o) := Hy(P,||Qs). To find a robust estimator,
we would like to find an order o« > 0 such that the o-value

that we obtain using the numerical approach would be least

sensitive to errors in the evaluated a-divergence. If we have
an error =

approximately have an error Ao = | F;Y(H )| - AH in
the estimated o-value. Thus, we want to solve
. d
argmin, - o ﬁFa (H)|.
By the inverse function rule, if H = F,, (o), we have that
. d FU(H) . 1
ar mln —=argmin
& aH S0 | By (A1)

—argmax, o |Fy(o)|

Using the relation (A.17), we can show that the optimal
hockey-stick divergence estimator is always near & = 1 which
corresponds to the TV distance.

Fo (o)

. : ; o
has its maximum on the interval [1,e 27 ].

Proof. The proof goes by looking at the expression ﬁF’ (o).
Clearly F! (o) is negative for all o > 0 and for all & > 0.
Thus |F ()| = —F. (o).

Using the expression (A.16), a lengthy calculation shows
that

1 1 1
— +log o
\/—Q?e ~3 (35 +loga)? <<2U+loga) (w—loga>
1
(e vee) )
1 1t e 1
+ ,;27(8 2(2 log a) ((—M—loga>

1 1
% og «x ol

(A.18)
When a = 1, ie., loga = 0, we find from Eq. (A:I8) that
d 1 1
—F a=1] = ———¢e 852 < 0.
da a(9)la=1 24/2mo?

On the other hand, when log o = %, we see from Eq. (A.18)
that

ot ) = exp () = e st (L L
da T = e () = e (o )

which shows that - F/ (o) ) >0 when o > 1.

a=exp (&

AH in the estimated o- divergence, we would

Moreover, we can infer from Eq. (A.18) that -& F (o) is

da™ @
negative when 0 < a < 1 and positive for o > e 2. Thus
|F '(0)| = =L F/(0) has its maximum on the interval
[1 e2s).
O

Figure |17] illustrates numerically that the optimal value of
« is not commonly far from 1.
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Fig. 17. The value of |F/ (c)| as a function of o, when o = 5. We see that
the optimal value is not far from o = 1, indicating that the choice o = 1
gives an estimate of o that is robust to errors.

Numerical Example: Consider the two distributions P ~
q-N(1,0%) +(1—q)-N(0,06%) and Q ~ N(0,0?) with the
parameter values ¢ = 1/4 and o = 0.3. Estimating the TV -
distance using k = 10% samples from both P and @ and 20
bins we get the estimate 0.2256. Using the fixed value ¢ =
1/4, this translates to a o-estimate of 0.302. Using Lemma
we get for the TV distance a 99.99 % - confidence interval
[0.302 — 0.005, 0.302 4+ 0.005] which translates to a o-interval
[0.285,0.32] so that 0.285 would be a 99.99 %-confidence
lower bound for o.

L. Algorithm for White-Box Auditing

The following algorithm is considered in the white-box
auditing experiments of [8] and also in the experiments in

our Section [VII-BI



Input: Training dataset D, sampling rate ¢, learning rate 7,
noise scale o, gradient clipping constant C', loss function ¢,
canary gradient g’, canary sampling rate g., function clip(-
that clips vectors to max 2-norm C', number of observations
T, number of training iterations 7.
Observations: O — [|, 0" — [].
Observations: O — [|, 0’ — |].
Set: D' = D|J{(«',y")}.
Initialize: 0 = 6.
for t€[T]: do
B; — Poisson subsample instances from D, each with
probability q.
Bj — Poisson subsample instances from D, each with
probability q.
VIt = X yen, clip(Vol (0, (z,))).
VIt] = V[t] + N(0,C?c?).
VIt = > eyes clip(Vol(0, (z,y))).
Vit] — V[t + N(0,C?c?).
With probability g.: V[t]' — V][t]' + ¢’ (add canary with
probability gq.).
Oft] = (Vltl, g').
oft]" = (VL' g').
0 — 0 —nVIt].
end for
return O,0’.

J. Further Experimental Results: HS-Divergence Between 1d
Gaussians

Figures [18| and [19] we show the results for n = 5-10° and
n =5-109, respectively. In case n = 5 - 10°, Lemma
would give for k& = 10 the error estimate ~ 2 - 1072 whereas
the actual error seems to be ~ 1074, In case n = 5 - 10°,
Lemma would give for & = 10 the error estimate ~ 6-10~3
where as the actual error seems to be ~ 10~°. Improving
the bound of Lemma [IT] would directly improve the sample
complexity of obtaining high-confidence lower bounds for the
DP parameters.

10-14 —— Exact HS-divergence fore =1
Algorithm 2, nr. bins k= 10
------- Algorithm 2, nr. bins k= 160

o —-— Algorithm 2, nr. bins k= 400
S 10724
(]
>
]
2
9
£ 103

1074

1.0 1.5 2.0 2.5 3.0

(4

Fig. 18. Exact hockey-stick divergence H.(P, Q) and the approximation
obtained using Alg. [3| for different values of o, when k = 5 - 10°. The bin
width hy, set using Eq. ([V3) gives here k = 160 bins.

HS-divergence

10714 —— Exact HS-divergence fore =1
Algorithm 2, nr. bins k= 10
------- Algorithm 2, nr. bins k= 342
—-— Algorithm 2, nr. bins k= 600
10—2<
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Fig. 19. Exact TV distance TV (P, Q) and the TV distance approximated
using Alg. for different values of o, when k& = 5 - 10%. The bin width h,,
set using Eq. (IV3) gives k & 342 bins.
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