

Breaking the tower: How did we get into this mess?

What we hoped for:

The promise of a brighter future via:

"Softwarization & Disaggregation of Network Functions"

Leading to:

- Flexible adaption to customer needs.
- more vendors,
- faster innovation,
- optimized resource utilization,
- energy-efficient components

What we experienced:

The harsh reality:

"Operators need to become Integrators as well"

And we are not good at that since:

- Integration is extremely hard,
- handling the dynamics of SW requires new operational procedures,
- resource/energy/cost consumption increases.

CSPs are in this domain (currently) too slow and inflexible, too ineffective and expensive and still lack stability.

What went wrong:

It's not a technology problem, but a:

"Lack of Common Understanding how to work together effectively"

Regarding how to:

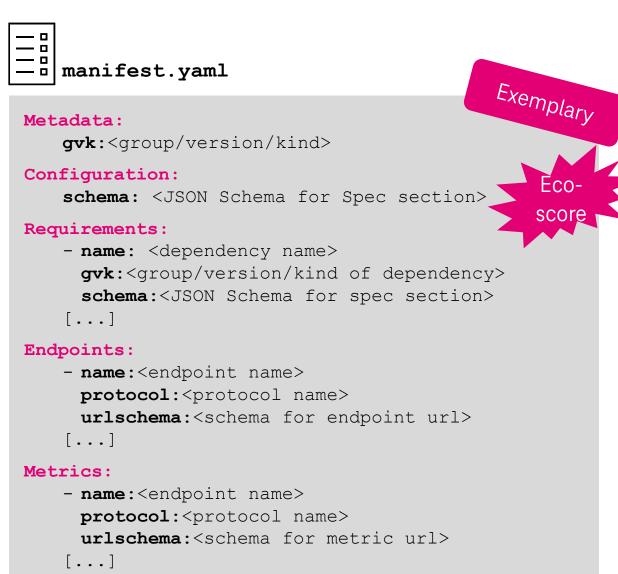
- Plan network solutions,
- build network solutions,
- operate network solutions and,

 Configure then in a sustainable approach

Many proposals have been made to address these issues which do not converge, and legacy considerations still cloud our vision

CSPs, infrastructure and network function providers as well as potential integrators require a commonly accepted simplified understanding of how to work together

How to describe components as building blocks?

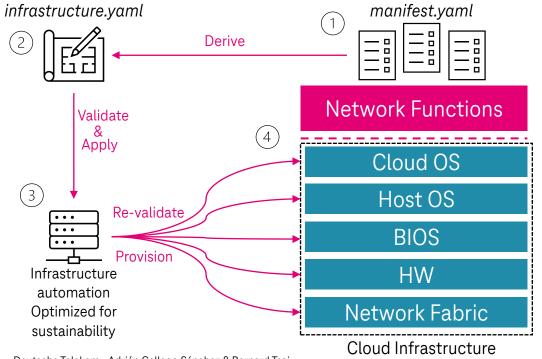

Imagine we had...

"Component Manifests"

which describe in a machine-readable format how to handle a component (container image + operator) and allows architects to design integrated network solutions containing

- the schema for the sustainable configuration of the component
- the list of requirements towards other components along with the schema for the configuration parameters
- the schema for accessing the service endpoints provided by the component
- the description of all exposed service metrics and their schemas provided by the component including those related to sustainability (sustainability by-design)

per default provided by the vendors of the components.


How to specify cloud infrastructure requirements?

Imagine we had...

"Common Infrastructure

Configuration Templates"

that would allow to capture infrastructure requirements of network functions and automate the provisioning of a suitable cloud infrastructure.

infrastructure.yaml

Exemplary

Metadata:

cluster:<cluster>
version:<version>

Network:

[network specifications]

Hardware:

[hardware specifications]

BIOS:

[BIOS specifications]

HostOS:

[Host OS specifications]

CloudOS:

[Cloud OS specifications]

&

infrastructure validation functions

How to continuously integrate & deploy solutions?

(the bread & butter tasks handled by an integrator)

Sourcing

Retrieval of software from suppliers

Configuration

Definition of target state of a solution

Integration

Construction of release bundles

Distribution

Distribution of release bundles

Deployment

Rollout of releases into runtime env.

Validation

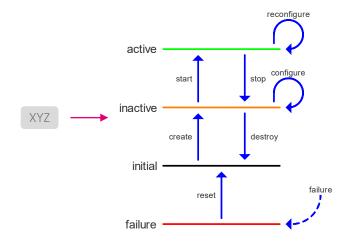
Functional and nonfunctional tests

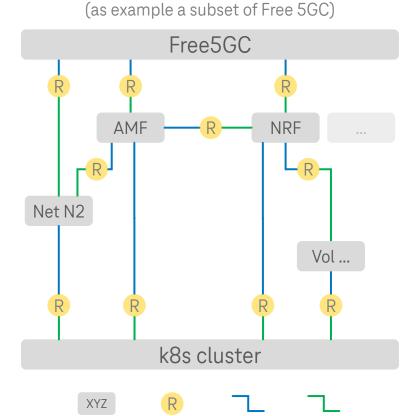
where we would need to give clear guidance and request support from our vendors

- simple replication,
- signed releases,
- sem. versioning,
- regular updates of:
 - manifest files
 - images
 - operators
 - config tools
 - validation tools

- config. schemas,
- if really needed, pluggable config tools,
- dry-run capability,
- defaulting to energy-efficient settings

- simple to-use packaging format,
- optimized CI pipelines,
- usage of energyaware testing environments
- support of distributed secrets management,
- delta updates,
- minimizing artifact duplication across stakeholders
- non-proprietary and easy to debug deployment mechanisms,
- simplified & harmonized lifecycle management with sustainable ops.
- pluggable validation tools,
- support for debugging,
- tooling for sustainability metrics,
- power usage checks



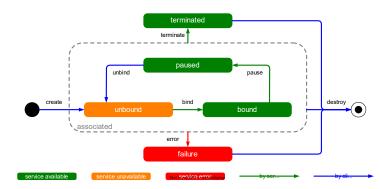

How can we continuously change without disruption?

Imagine we had... "Harmonized Lifecycle Management"

Components XYZ

CSPs make use of a generic high-level lifecycle state model to manage the components of network solutions

dependency


service

relationship

Network Solutions

↓ Relationships ℝ

CSPs use in the same manner a generic high-level lifecycle state model to signal the status of the relationships between components

Converging towards a common understanding

The Community

We propose to establish a community of communication service providers.

Their mission is to jointly develop and maintain an evolving canonical catalogue of recommended best practices for the management of disaggregated network functions.

The Proposal Consolidate, Simplify & Refine!

The Methodology

- 1. Workstreams on priority topics, e.g.
 - component manifests
 - infrastructure templates
 - validation functions
 - CI/CD process
 - harmonized lifecycle management
- Evaluation of the outcome of existing community initiatives & SDOs and selection of recommended best-practices
- 3. Refinement of the best-practices into results documents/procedures used in real-life implementations

The Results

Each workstream defines the expected results to be used in the actual operational context of the CSPs, e.g.

- Requirements for RFQs
- Guidelines for Configuration
- Guidelines for sustainable NFs design
- Guidelines for CI/CD Procedures
- Validation Procedures
- Measurable Sustainability KPIs

And provides feedback towards vendors, community initiatives and SDOs as well as Q&A support.

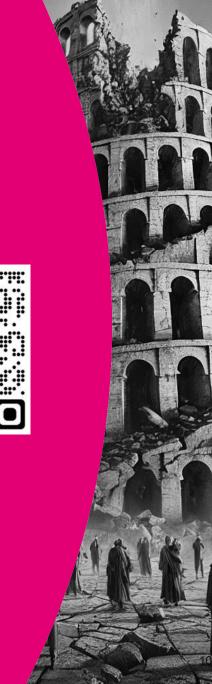
A&P

Contacts

Deutsche Telekom 5G and Cloud Architect Adrian Gallego Sanchez

Deutsche Telekom Lead Architect Bernard Tsai

Disclaimer



This work is Co-funded by the European Union under Grant Agreement 101191936. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of all SUSTAIN-6G consortium parties nor those of the European Union or the SNS JU (granting authority). Neither the European Union nor the granting authority can be held responsible for them.

