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ABSTRACT In future 6G networks, dependable networks will enable telecommunication services such
as remote control of robots or vehicles with strict requirements on end-to-end network performance in
terms of delay, delay variation, tail distributions, and throughput. With respect to such networks, it is
paramount to be able to determine what performance level the network segment can guarantee at a given
point in time. One promising approach is to use predictive models trained using machine learning (ML).
Predicting performance metrics such as one-way delay (OWD), in a timely manner, provides valuable
insights for the network, user equipments (UEs), and applications to address performance trends, deviations,
and violations. Over the course of time, a dynamic network environment results in distributional shifts,
which causes catastrophic forgetting and drop of ML model performance. In continual learning (CL), the
model aims to achieve a balance between stability and plasticity, enabling new information to be learned
while preserving previously learned knowledge. In this paper, we target on the challenges of catastrophic
forgetting of OWD prediction model. We propose a novel approach which introducing the concept of
multi-generator for the state-of-the-art CL generative replay framework, along with tabular variational
autoencoders (TVAE) as generators. The domain knowledge of UE capabilities is incorporated into the
learning process for determining generator setup and relevance. The proposed approach is evaluated across
a diverse set of scenarios with data that is collected in a realistic 5G testbed, demonstrating its outstanding
performance in comparison to baselines.

INDEX TERMS 3GPP, 6G, Continual Learning, Delay Prediction, Generative Replay, Machine Learning.

I. INTRODUCTION

HE evolution towards 6G is expected to enable a

new generation of applications, for example in the
area of cyber-physical systems [1], [2], demanding ultra-
reliable, real-time, and low-latency communication. For such
applications, it is crucial to assess performance indicators
such as One-Way Delay (OWD) [3] and Round Trip Time
(RTT) [4], as even minor disturbances in the communication
between two network functions could lead to severe opera-
tional and safety risks. Unfortunately, there is complexity
associated with assessing the performance outcome of a
User Equipment (UE) as it is highly influenced by and
dependent on multiple factors such as network configuration,
signal conditions, competing traffic, exogenous processes
in the UE, and variations in UE hardware [5]. A promis-
ing approach, explored in both academia and industry, is
based upon Machine Learning (ML) where the performance
outcome of a UE, such as the OWD [6]-[8], is predicted
based upon statistics available to the network operator.

Accurate performance prediction, not only with respect to
point estimates but also with respect to distributions and
tails [7], [9], [10], is essential for proactive service assurance,
troubleshooting, verification, and performance optimization.

Previous research has demonstrated the feasibility of mod-
eling delay; however, it has also shown that model per-
formance deteriorates over time due to distributional shifts
in data. These shifts are due to factors such as previously
unseen user behavior patterns (e.g., traffic fluctuations, mo-
bility) and variations in UE chip sets [11]. Various mitigation
strategies have been explored, including transfer learning and
domain adaptation [12], and semi-supervised learning [13].
More broadly, it is well established that network manage-
ment models degrade over time due to the dynamic nature
of networks and their underlying compute resources [14].
The challenge of maintaining network management models
over time has also been identified in standardization, and
thus there is an increased interest in incorporating automated
ML workflows and continuous operations into the network
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FIGURE 1. A dynamic network environment gives rise to distributional shifts in the data, causing loss of OWD model performance. Continual learning
can balance model plasticity and stability, ensuring new information is captured in the model while preserving old knowledge, that is avoiding

catastrophic forgetting.

architecture. For example, in 3GPP, the ML workflow for the
Network Data Analytics Function (NWDAF) is specified in
[15], while the O-RAN ML workflows are reviewed in [16].

Despite recent advancements in model generalization, a
significant challenge remains: sustaining model performance
over extended periods. This challenge is illustrated in Fig. 1,
where a network environment evolves over time, introducing
distributional shifts that can degrade model performance.
Each time step in this dynamic environment can be con-
sidered as a continual learning (CL) task, new data is ob-
served and thereafter integrated with the existing generalized
model through CL, producing an updated generalized model.
The key challenge lies in balancing model plasticity with
learning stability [17] - ensuring that new behaviors in the
network environment are learned while preserving previously
acquired knowledge. In other words, preventing catastrophic
forgetting in ML [18]. This paper specifically addresses
this challenge for OWD prediction models, as discussed
above, and proposes a novel approach based on CL. The
method leverages generative replay [19] and extends such
approaches with a multi-generator framework, where gener-
ators are designed and maintained using domain knowledge
of the network and its UEs. Generative replay, specifically
the proposed multi-generator approach, not only mitigates
catastrophic forgetting, it also improves performance on the
distribution tail as well as enabling network operators to
reduce the storage requirements for previously seen data
samples.

The main contributions of this paper are as follows. We
propose a novel method for CL based on generative replay,
introducing the concept of multi-generator in combination
with tabular variational autoencoders (TVAE) to mitigate
catastrophic forgetting in OWD prediction. Additionally, we
elaborate on a method for determining generator setup and
relevance, leveraging knowledge of UE capabilities, thereby
incorporating domain knowledge into the learning process.
The proposed approach is evaluated across a wide range

of scenarios in a realistic 5G testbed, demonstrating its
effectiveness in comparison to a baseline both from a point
estimate perspective, and also on the tail. Moreover, we
highlight the reduced need for data storage, targeting the
challenges of resource constraints in 5G networks, which
enhances the efficiency of the method. Finally, we discuss
how an OWD prediction engine can be integrated into
the 3GPP architecture, specifically within NWDAF, thereby
simplifying the realization of the approach in operational
networks.

The rest of the paper is organized as follows. Section
IT describes the background on our use case and problem
formulation. Section III presents the necessary background
on deep generative replay and introduces the novel approach
on multi-generator CL, whereas Section IV describes our
testbed and datasets. Section V describes an in-depth eval-
vation framework of the approach and Section VI presents
the evaluation results. In Section VII, we provide discussions
related to the approach and an architectural view on OWD
prediction in 3GPP. Section VIII contains related work, and
conclusions are found in Section IX.

Il. PROBLEM DEFINITION
In this section, we provide a high-level background on OWD
prediction, proceed with notations and framework of CL, and
present problem statement.

A. BACKGROUND

The objective of this paper is to establish a robust approach
for training and maintaining a ML model that predicts
OWD as experienced by a UE. This prediction is based
on measurements taken with high frequency from the base-
band in the Radio Access Network (RAN). Although our
previous work [11] addressed some aspects of OWD model
generalization, the expanded aim of this paper is to prevent
catastrophic forgetting, and thus ensure robustness during
long-term maintenance of OWD models.
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In the scenario illustrated in Fig. 1, a model manager is
tasked with maintaining a OWD model, which was originally
trained using historical data. These data distributions are
influenced by a variety of factors, such as radio condi-
tions, network configurations, network load, UE movement
patterns, and UE device types. As the network evolves
over time, the resulting dynamicity leads to distributional
shifts in the measurements; among others, the dynamicity is
related to new UE behavior, previously unseen UE types, and
potentially altered network configurations. Consequently, in
the subsequent time slot, the OWD and baseband features
exhibit new distributions.

The challenge targeted in this paper is to maintain the ML
model performance over time, leveraging and extending the
concept of CL for retraining the model with new data while
preserving knowledge related to previous steps.

B. NOTATIONS AND FRAMEWORK

In the following, we describe the notations and framework.
Here, the task is prediction of OWD as observed by the UE
using RAN data collected in the baseband.

We denote the ML task by 7. The OWD measurements
from the UE are denoted by y distributed according to
P(Y). Measurements from the RAN are referred to as the
features. Let x; denote the j-th feature distributed according
to P(X;). A collection of d different features are shown
for convenience in the vector notation by x € R<; however,
note that no explicit spatial information is assumed across
the elements of x, indicating that we are concerned with
tabular data.

We assume a CL scenario where the underlying ML task,
T, remains the same. However, the task condition may
change due to the effect of external factors that result in
distributional shift in space of X and Y. In the context of
OWD prediction, example of such external factors are the
UE’s device type along with the UE position and movement
patterns (refer to Table 1). Let T denote the task at the
i-th condition. A set of such task conditions are denoted by
T ={TW |i=1,2,...,1}, where I is the number of tasks.
In CL framework, the set 7T is treated as a sequence.

Let Dy = {aV, ) [n=1,...,N®} denote our
dataset consisting of pairs of input features and output targets
at the i-th task condition 7", where N is the number of
samples in the dataset. Further, let M denote a ML model
that serves as the predictive model of y given . In the
CL framework, task conditions are introduced sequentially
which points at the sequential learning of the predictive
model.

Let 0 denote the parameter set of the predictive model.
The learning begins with the dataset from a given task
condition, M (Drp@);#0) parameterized by 6, and follows
with the next task condition, M (Dry¢+1);6). However, a
major complication is that the datasets from two arbitrary
task conditions, Dp) and Dy i+1), may not share the same
underlying distributions, that is P(Xj(.z));«éP(Xj(.ZH)) for
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the j-th feature and P(y())#£P(y(+1). As the result, the
learned model would have a reduced predictive relevance for
data from the i-th task condition. The problem is commonly
referred to as the catastrophic forgetting which magnifies as
sequential learning continues.

One line of approaches for solving the catastrophic for-
getting problem is to refrain the model from forgetting by
presenting data, or a subset of data, from the past task
conditions, referred to as the data replay. While highly
effective, the assumption of having access to the past data,
or a subset of which, is restrictive for many practical appli-
cations, especially in resource-constrained telecom network
environments, due to the cost of data storage as well as
privacy concerns.

C. PROBLEM STATEMENT

The deep generative replay framework [19] presents a
promising approach to CL, addressing the limitations as-
sociated with the data replay. While potentially effective,
we argue that the generative replay itself can suffer from
catastrophic forgetting. As the number of tasks increases
over time, with the growing diversity resulting from intro-
duction of new tasks, the generative model tends to capture
merely the modalities in the data that represent the bulk of
the underlying data distribution and fail to capture all the
modalities. We refer to this phenomenon as mode collapse
that is when a modality that was present once collapses into
a more dominant modality.

The main reason for the mode collapse is the limited
expressiveness capability of the underlying generative model.
One way to improve the model expressiveness is to choose
a generative model suitable for the data under consideration.
We show that this has a major influence in the overall success
of the generative replay in the framework of CL. Specifically,
in the context of OWD prediction that is concerned with
tabular data, we show that using a generative model tailored
for tabular data substantially improves the performance.
However, this does not resolve the mode collapse if the
data generation process differs considerably across tasks.
As an example, the UE device type is a factor that gives
rise to different data generation processes. In this regard, we
argue that having multiple generative models where each
represents one of the modalities of their respective data
generation processes can further improve the overall model
expressiveness. However, the question is how one would
select the relevant generative model from a given collection
of generative models? This points to a need for a generator
selector. One approach is to construct the generator selector
in a data-driven fashion. Alternatively, one can leverage
domain knowledge in construction of the generator selector.
As an example, in the context of our running example,
understanding of the UE device type is knowledge that
can help select the right generator. Here we show that
incorporating domain knowledge can significantly mitigate
catastrophic forgetting by providing contextual frameworks
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that guide learning processes. By embedding these domain-
specific insights into the learning architecture, models can
develop more stable representations that reduce the risk of
mode collapse (or in other words catastrophic forgetting) as
a new task arises.

In summary, in the context of OWD prediction, we make
the following contributions to reduce risks of catastrophic
forgetting: (1) use of a generative model that is tailored
for tabular data, (2) construction of a multi-generator ar-
chitecture for the generative replay, and (3) devising a
domain-guided generator selector. We show via empirical
experiments that the proposed steps substantially reduce
risks of catastrophic forgetting and contribute to improving
model’s ability to maintain performance across diverse tasks.

lll. MULTI-GENERATOR CONTINUAL LEARNING

In this section, we describe our novel domain-guided ap-
proach to construction of a multi-generator-based generative
replay in the framework of CL. We start this section with a
background of the preliminaries needed for our construction
and proceed with the proposed approach.

A. BACKGROUND

1) Deep generative replay

The model architecture of the deep generative replay consists
of a generative model, generator, and a task solving model,
solver. Shin et al. in [19] refer to this dual model architecture
as scholar, defined by H = {G, S} where G denotes the
generator and S denotes the solver. The generator is a pa-
rameterized generative model, with a parameter set denoted
by ¢, that is learned to produce real-like samples of the input
features, and the solver is a parameterized predictive model
of the task with a parameter set denoted by 6.

The components of the scholar, generator and solver, are
learned in a two-step sequential-learning framework. Let
H( denote the scholar model at the i-th task condition.
The generator and the solver of (") are denoted by G(¢(*)
and S(0()). Furthermore, for convenience, we use the fol-
lowing notations equivalently: G(9) = G(¢¥)) and similarly,
S = §(pW),

The training procedure involved in learning of the current
scholar, %, from the prior scholar, H =D involves two
independent training procedures for the generator and the
solver.

In the first step, from the prior state of the generator,
GU=1), a set of artificial input data samples are produced,
referred to as the replay input features and denoted by x'.
The replay targets, y’, are predicted from the prior state
of the solver, S(—1), given replay inputs, =, according to:
y' =5 (';00~Y), where 61 denotes the prior state of
the solver’s parameter set. The replay targets are the solver’s
response to the replay input in the past. Finally, given the
input features from the current task condition, x, the targets,
y, and the replay targets, ', a training loss is constructed
according to:

lg = aE(mqy)NDT(i) {Ls (S (iB; Q(i)) ,y)}
41— By g [LS (S (a:’; 9@)) y)} e

where ' ~ G~1) denotes the replay inputs drawn from
the prior generator, (x,y) ~ Dpe:) denotes the pair of input
samples and targets taken randomly from the dataset of the
i-th task condition, « is a ratio of mixing real data from the
current task condition with real-like data from the previous
task condition and Lg denotes the solver’s loss function.
This step updates the solver of the ¢-th scholar.

Independent from the first step, in the second step, the
replay inputs x’ are mixed with the input features from
the current task condition, x. Let T := (a,a’) define the
concatenation of the replay inputs with the current input
features. Given x, the generator is trained (or adapted) to
learn to generate samples from their cumulative underlying
distribution. The learning step involves minimization of the
generator’s objective loss function,

(6(9) = Barcitn am, ) [La (2,8070)] @)

where &’ ~ GU~1) denotes the replay inputs drawn from the
prior generator,  ~ Dy ) denotes the input samples taken
randomly from the dataset of the i-th Eask condition, L¢ is
the loss function of the generator, and x is the reconstructed
samples produced by the generator given the current setting
of its parameter set, ¢(*). This step updates the generator of
the ¢-th scholar.

2) Tabular Variational Auto-Encoders
TVAE is the state-of-the-art variational auto-encoder (VAE)
for tabular data generation [20]. It is specifically designed for
tabular data, which is typically composed of a mix of both
discrete and continuous features. Continuous features may
have multi-modal and non-Gaussian distributions whereas
discrete features are sometimes imbalanced making the mod-
eling difficult.

The basic scheme of a VAE composes of an encoder and
a decoder [21]. The encoder compresses the input & into the
latent space. The decoder receives as input the information
sampled from the latent space and produces x’ as similar
as possible to x. In TVAE, the modeling for encoder
is similar to conventional VAE. The decoder is designed
specially so that the probability distribution of data can be
modeled accurately; refer to [20] for details. Also, a mode-
specific normalization is designed to deal with features with
complicated distributions. This architecture allows TVAE
to generate data that closely match the distribution of real
tabular data, making it more suitable for applications like
data imputation, synthetic data generation, and tabular data
modeling.
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B. PROPOSED SOLUTION: MULTI-GENERATOR
GENERATIVE REPLAY

This section describes our construction of multi-generator
generative replay. We first describe the construction of the
generator selector and proceed with describing the construc-
tion of the multi-generator generative replay.

1) Generator relevance determination
Let a = (a1,...,a;) ", for all a; € {0,1}, denote a binary
vector of J data configurations at a given task condition
where each element specifies a different configuration, re-
ferred to as the task configuration vector. In [11], Rao et
al. showed that OWD distribution is significantly dependent
upon the UE type. Therefore, in our use case of OWD
prediction, the elements of the task configuration vector
represent UE device type; as an example, for three different
UE types as described in Table 1, the task configuration
vector is expressed by a 3-dimensional vector with binary
elements with the three elements corresponding to the UE
types,

a = (UE1,UE2,UE3) . 3)
Further, we denote the task configuration vector at the i-th
task condition by a(?.

In a similar fashion, we define a configuration vector for
the generators, named the generator configuration vector.
Formally, let by = (bg1,...,b)", for all by ; € [0,1],
denote the configuration vector for the k-th generator with
the elements representing the same configurations as in the
task configuration vector. However, unlike a, elements of b
do not need to be necessarily binary and can take soft values
between zero and one; if the generator is fully applicable for
a given configuration its corresponding element in b is set
to one, if it is not applicable it is set to zero, and otherwise
it may be set to a value in-between zero and one.

We then define a vector of relevance scores for the :-th task
condition, referred to as the relevance vector and denoted by
r() € RX where K is equal to the number of generators.
The elements of the relevance vector quantify how well a
generator is relevant to the given task condition, and it is
computed by the inner product of the task configuration
vector and the generator configuration vector, expressed as:

, . N\ T
r) = (blTa(’),...,bKTa(’)) €))
Finally, the index of the most relevant generator is given by:
ks = argmax (r(i)) , Vk=1,....K. (5)

In the context of our use case, from domain knowledge,
we hypothesize that the UE device type is the major differ-
entiating factor of data generation processes. As such for
the first UE, the generator configuration vector is set to
b, = (1,0,0) which implies that this generator is suitable
for the first UE device type. Similarly for the second and
third UE devices, the generator configuration vectors are de-
fined as by = (0,1,0) and bz = (0,0, 1), respectively. As an
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example, let the task configuration vector at the current task
be denoted by a = (0, 1, 0) indicating the second UE device
type. Then following (4) and (5), the generator defined by
b, would be the most relevant to the task condition defined
by a. In a similar fashion, upon arrival of a new task, the
relevant generator will be selected based on the setting of its
task configuration vector.

2) Construction of multi-generator generative replay

We revisit the construction of the generative replay and
extend it from a single generator to a finite set of multi-
generators.
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We define a scholar by a set of generators and a single
solver, H = {{Gy},.x ,S}. Further, we assume their cor-
responding set of generator configuration vectors, {by};
are given. The learning of the scholar at the current task
condition, H?, involves a procedure of updating the solver
followed by a generator selection step and a procedure of
updating the generator. Fig. 2 summarizes the proposed
architecture for multi-generator generative replay with three
steps procedure of learning of the scholar at the current task
which is described in the following.

a: Solver update

Let {x}}, , denote a set of replay inputs generated
from G(l %}1; k- A set of corresponding replay targets,
{¥}.}{.x» are predicted from the prior state of the solver,
SG=D, where yj, = S (x};0¢~Y). Finally, given the input
features from the current task condition, , the targets, y, and
the replay targets, the solver’s training loss is constructed
according to:

lg = O‘E(mxy)NDT(n {LS (S (:B;Q(i)) ,y)]
+ (1= o)y [LS (S (w;; 9@‘)) y;)} . (6

b: Target generator selection

We need to obtain the index of the most relevant generator,
k., for the current task configuration vector, a®, given
{bi},.x- This is done by application of Eq. (4) and Eq. (5).
The corresponding generator is referred to as the target
ge(nerla;tor at the i-th task condition and it is denoted by
Gy .

*

i—1
=G},

c: Target generator update

First, from the prior state of the target generator, fo:l),
replay input features are produced which are denoted by xj, ,
where the subscript k, is used to emphasize on the generation
through the target generator. The replay inputs are mixed
with the input features from the current task condition, x,
and form x := (x,x),_ ). Given z, the target generator is
updated via minimization of the following objective function:

gGk*((bk*):Ew% NGEJ_U@N,DTU) [Lgk* (éaiﬁggﬂ , (D

where Z is the reconstructed samples produced by the target
generator given the current setting of its parameter set, ¢,
This step updates the target generator of the :-th scholar
while the other generators are unaltered.

IV. A5G TESTBED FOR CREATION OF ONE-WAY DELAY
DATASETS

To evaluate the multi-generator generative replay approach
for robust OWD prediction in future 6G networks, we
leverage an in-house 5G-mmWave testbed [11] to create
datasets consisting of base station features and ground-truth
OWD values. In the following, while we briefly describe the

testbed, we focus on the experiments conducted in support
of evaluating our approach.

The testbed is a 5G NSA system build upon commercially
available Ericsson StreetMacro 6701 device that implements
5G NR, and an Ericsson Radio Dot 2243 device that imple-
ments 4G LTE. The StreetMacro does analog beamforming
using one horizontal and one vertical beam (1 x 200 MHz
dual polarized beams). We set the 4G LTE eNB to operate on
band B3 (1800 MHz frequency, with 5 MHz bandwidth), and
5G NR gNodeB (gNB) on band n257 (28 GHz frequency,
with 100 MHz bandwidth). The testbed resides in an indoor
testbed area. The floor plan and associated positions of the
5G NR and 4G LTE radios, is illustrated in Fig. 3. For details
regarding the setup we refer to [11].

Similarly to [11], we measure OWD, between the UE
and a receiver in the network, with three different types of
5G UE devices, with different manufacturers and chipsets,
referred to as UE1, UE2, UE3. The OWD measurements are
conducted using TWAMP [22] probe packets of sizes 100
and 1400 bytes. An additional UE is configured for creation
of network traffic scenarios, where that UE is introducing
competing uplink traffic into the network, ranging from 0 to
60 Mbps, in steps of 10 Mbps. A UE is either stationary
(position 1, 2, or 3), or moving according to a set of pre-
defined movement patterns (rectangular, zigzag, and linear).
The experiment parameters are summarized in Table 1.

The experimental scenarios were designed to expose the
UE and the network to a wide range of conditions that
contribute to variations in OWD and baseband features. The
range of loads was selected to expose the network from being
completely empty, to operating in a state of congestion. In
addition, the UE movement patterns were designed to ensure
that we captured excellent channel conditions, worst-case
cell edge conditions, as well as conditions in between. These
network conditions, when put into a sequence, represent
distributional shifts that the multi-generator generative replay
approach must mitigate.

In addition to collection of ground-truth OWD, the testbed
was configured with multiple measurement points to extract
network metrics [11]. More specifically, we extract logs from
the gNB corresponding to beam forming, UE connectivity,
and uplink (UL)/downlink (DL) scheduling events [23]-[25],
on the sub-millisecond scale. Of a much larger set available,
we choose to monitor and use 103 metrics.

For each set of parameters listed in Table 1, we sent 5000
TWAMP packets, spacing each packet 50 ms apart. This
process generated a dataset with 1.26 million accurate OWD
samples. We averaged the network metrics obtained from the
gNB over 50 ms, and organized them into bins aligned in
time with the OWD values. Consequently, each sample in
the dataset includes a OWD measurement and the average
value of each feature within the 50 ms bin.

In this paper, we focus on OWD prediction for UL, while
the approaches can be generalized to DL as well. Relevant
network metrics are used as features. We use measurement
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TABLE 1. Testbed experiment parameters.

UE 1, UE 2, UE 3
100 B, 1400 B

UE device type
Probe pkt. size

UL load 0, 10, 20, 30, 40, 50, 60 Mbps
P1: Stationary at positions 1

Position and P2: Stationary at positions 2

Movement patterns P3: Stationary at positions 3

P4: Rectangular movement
P5: Zigzag movement, pos. 1 — 2 — 3 — 1
P6: Linear movement, pos. 1 -2 — 3 — 1

experiments data with all varying UL load and large probe
packet size (1400B).

V. EVALUATION METHODOLOGY

In this section, we describe our evaluation methodology,
starting with describing our approach in designing CL task
sequences, presenting methods considered in our evaluation
framework, and introducing relevant metrics devised for
assessing the performance of the CL methods.

A. DESIGNING CL TASK SEQUENCES

In [11], Rao et al. showed that various configuration settings
such as UE device type and the UE movement pattern can
result in distributional shift both at the input space as well as
in the task space (OWD). Inspired by this, we create a series
of CL tasks by utilizing configuration settings from various
experiments to define the tasks. In particular, each task is
constructed based on the UE type, along with its position
and movement pattern as defined and illustrated in Table 1
and Fig. 3. Accordingly, two groups of CL task sequences
are constructed which are shown in Table 2.

In the first group, named Group 1, we assume there are
only two different UE device types along with 6 different
positions and movement patterns. Table 2 (a) summarizes 6
different scenarios considered in our evaluations each labeled
by a case identifier (Case ID). The scenarios are devised
based on the UE device types and their movement patterns.
As an example, in one scenario (Case ID 1), UE 1 and UE 2
are considered together with the UE movement pattern from
stationary to moving (S — M). To explore the impact of
task order on the evaluation results, in the other scenario
(Case ID 2), the order of task sequence of UE 1 and UE
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2 is reversed from moving to stationary (M — S). In the
same way, the task sequence of UE 2 and UE 3 (Case IDs
3,4) and UE 3 and UE 1 (Case IDs 5,6) are designed. All
scenarios in Group 1 consists of 12 CL tasks in each. Among
the various order of tasks we explored, the ones presented
here are representative of the overall patterns observed.

Similarly, in the second group, named Group 2, we assume
there are three different UE device types with 6 different
positions and movement patterns. Two scenarios (Case IDs
7,8) that are considered in the evaluations are summarized
in Table 2 (b). Both scenarios in Group 2 consists of 18 CL
tasks in each.

B. EVALUATION FRAMEWORK

We evaluate our multi-generator generative replay approach
using the two defined groups of CL task sequences, and com-
pare to several baselines as described below. For approaches
based on generative replay, we employ a fully connected
MLP neural network as the solver. The architecture of the
MLP is shown in Table 3. In the following, we discuss 4
baseline approaches, as well as providing additional details
regarding our own approach.

1) Baseline approaches

a: Naive

As in [27], Naive method could be used as the lower
bound baseline for stability evaluation, in which the model
is trained continuously with data of each task, without any
particular framework to control forgetting. That is, the solver
is finetuned using data from the new task, without access to
the data from the previous tasks.

b: Cumulative

Cumulative method is used to evaluate the upper bound of
forgetting in CL as in [27]. For each task, it accumulates all
data from previous tasks and data of current task, re-train
the solver from scratch. There is no forgetting as cumulative
method could access and use all the previous data. However,
it is often infeasible in real world applications, due to
constrains in data storage and privacy.
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TABLE 2. CL task sequences for Group 1 and Group 2. Each task sequence is labeled by Case ID and Case Name. CL tasks are devised based on the UE
device types, along with its position and movement pattern. Note, P is for position and movement pattern, whereas S is for stationary, and M/ for moving.

(a) Group 1
Case ID Case Name CL task 1 2 3 4 5 6 7 8 9 10 11 12
1 UE 1,2 UE 2 1 2 1 2 1 2 1 2 1 2 1
S —-M P 1 1 3 3 2 2 4 4 6 6 5 5
N UE 1,2 UE 1 2 1 2 1 2 1 2 1 2 1 2
M — S P 5 5 6 6 4 4 2 2 3 3 1 1
3 UE 2,3 UE 2 3 2 3 2 3 2 3 2 3 2 3
S —- M P 1 1 3 3 2 2 4 4 6 6 5 5
4 UE 2,3 UE 32 3 2 3 2 3 2 3 2 3 2
M — S P 5 5 6 6 4 4 2 2 3 3 1 1
5 UE 1,3 UE 3 1 3 1 3 1 3 1 3 1 3 1
S — M P 1 1 33 2 2 4 4 6 6 5 5
6 UE 1,3 UE 1 3 1 3 1 3 1 3 1 3 1 3
M — S P 5 5 6 6 4 4 2 2 3 3 1 1
(b) Group 2
Case ID Case Name CL task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
7 UE 1,2,3 UE 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
S —- M P 1 1 1 33 3 2 2 2 4 4 4 6 6 6 5 5 5
3 UE 1,2,3 UE 1 32 1 32 1 32 1 3 2 1 3 2 1 3 2
M — S P 5 5 5 6 6 6 4 4 4 2 2 2 3 3 3 1 1 1

TABLE 3. Neural network architecture used in evaluations.

Generator VAE

Encoder: Hidden layers sizes: (128, 128). Activation function: ReLU.
Decoder: Hidden layers sizes: (128, 128). Activation function: ReLU.

Generator TVAE

The TVAE Synthesizer in python library SDV [26] is used to train a TVAE model and generate synthetic data.
Default parameters are applied, e.g. size of each hidden layer in the encoder and decoder is (128, 128).

Solver MLP

Hidden layers sizes: (200, 150, 100, 50). Activation function: ReL.U.
Loss function: MSE loss. Optimizer: Adam. Learning rate: 0.001.

c: Single generator with VAE (SingleGen-VAE)

It is illustrated in the state-of-the-art deep generative replay
algorithm [19] that a VAE could be used as the generator.
We evaluate its performance on our cases. The architecture
of the VAE is shown in Table 3. It is worth noting that
we experimented with different numbers of layers and layer
sizes where all of which produced similar results.

d: Single generator with TVAE (SingleGen-TVAE)

As it is presented in Section III, TVAE is specifically
designed for tabular data generation. The dataset of this study
is created from the 5G testbed, and the features of relevant
network metrics are a mix of both discrete and continuous
columns. Considering the tabular nature of the data, we view
TVAE as a more appropriate choice compared to VAE. This
aligns with one of the objectives of this work, which is to
highlight the significance of selecting the right generative
model based on the data structure. The architecture of the
TVAE is shown in Table 3.

2) Multi-generator with TVAE (MultiGen-TVAE)

As it is illustrated in Section III, based on domain knowl-
edge, UE device type is the primary determinant of how
data is generated. The generator configuration vectors
b, = (1,0,0),b = (0,1,0) and bs = (0,0,1) are defined
for three UE device types as described in Section III. For
CL task sequence Group 1, there are only two different UE
device types in each scenario, which leads to two generators,
one for odd-numbered tasks and the other for even-numbered
tasks. For CL task sequence Group 2, there are three different

UE device types in each scenario, which leads to three
generators. Here we consider TVAE as our choice of the
generative model.

C. PERFORMANCE EVALUATION

As the prediction of OWD is a regression task, the perfor-
mance of the model is evaluated using a standard percent-
age error metric known as mean absolute percentage error
(MAPE), aligning with our prior study [11], thereby facil-
itating consistent benchmarking and comparative analysis.
MAPE is defined as:

100 ~ |y — Gl
MAPE = — _—
N2l ®
where y; is the ground truth, ¢; is the predicted OWD, and NV
is the number of samples in the task dataset. Lower MAPE
values indicate better model performance.

To evaluate the performance of the selected CL algorithms,
we split the dataset for each CL task into training and test
sets (70% for training). Training is done sequentially with
the training set of each task according to the task sequence.
Performance is then evaluated using the test sets for all 1
tasks. After the model finishes learning of all I tasks, we get
the result matrix R € R?!, where R; ; is the performance of
the model on test set of task 7’ after training with the training
set of task 7;. Specifically for our evaluations, the model
performance R; ; is MAPE values. Inspired by the two CL
evaluation metrics Average Accuracy (ACC) and Backward
Transfer (BWT) in [28], we define metrics Average MAPE
(AveMAPE) and Forgetting(F) for our regression task OWD
prediction, where
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I-1
F= % Z Rp;— Ri;. (10)
=1
AveMAPE evaluates the overall performance of the tasks
learned so far. F shows the influence of learning the current
task on the performance of the previous tasks. In other words,
it evaluates the memory stability of old tasks. Higher values
of F indicate increased forgetting.

Furthermore, here, we introduce a new metric to assess
effect of both short-term and long-term forgetting, since F
alone does not capture short-term and long-term forgetting
specifically. We refer to this metric as F, which effectively
measures average k-step forgetting and is defined as:

I—k
1
Fr=-— Ripi—RiiVk=1,...,1—1, (11

where for smaller values of k, Fj, reflects short-term forget-
ting while for larger values of k, it captures the long-term
forgetting.

VI. RESULTS

In this section, we first present the evaluation results of
the CL task sequences Group 1 and Group 2, defined
in Section V. To further analyze our observations, in the
following, we evaluate the distribution of generated x’ and
corresponding ¢’ by VAE and TVAE, single generator and
multi-generator. In addition, we evaluate the model perfor-
mance on the tail of the OWD distribution. Finally, the model
performance of single generator and multi-generator with the
equal number of learnable parameters are compared.

A. EVALUATION ACROSS GROUP 1 AND GROUP 2

Fig. 4 summarizes the model performance across meth-
ods, our multi-generator approach as well as the baselines.
The performance of the model is evaluated by the metrics
AveMAPE, F, and selected Fj reflecting of short-term and
long-term forgetting: namely, F4 and Fg for Group 1 with
12 tasks in each sequence, and Fg and Fi5 for Group 2 with
18 tasks in each sequence.

The results notably demonstrate that our proposed
multi-generator based approach, MultiGen-TVAE, consis-
tently outperforms the single-generator based approaches,
SingleGen-TVAE and SingleGen-VAE, across all metrics
and scenarios. Next, we observe that the choice of generative
model considerably impacts overall performance; notably,
the TVAE-based approach SingleGen-TVAE clearly outper-
forms the alternative VAE-based approach SingleGen-VAE.
This suggests that VAE struggles to generate sufficiently
representative data samples for previous tasks, potentially
introducing noise with the generated samples. Additionally,
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as expected, the figures show that the Naive method gener-
ally represents the lower bound of performance across vari-
ous scenarios, whereas the Cumulative method consistently
reaches the upper bound of performance in all scenarios,
consistent with the discussion in Section V. It is also
apparent that the order of tasks affects the results; different
sequences of tasks lead to variations in overall performance
and forgetting in CL.

B. VAE VS TVAE

During the model training phase for Task 1, the generator
is trained using x, while the solver (OWD model) is trained
with (x,y). To compare VAE and TVAE, we generate x’
for Task 1 using both VAE and TVAE. As shown in Fig. 5,
we then apply principal component analysis (PCA) with 2
principal components on the generated x’ and visualize these
components using a kernel density estimate (KDE) plot.
Additionally, we plot the histogram of the corresponding
y' by applying the OWD model to the generated x’. We
take the CL task sequence with Case ID 1 as an example.
As demonstrated in Fig. 5, the distribution of =’ and 3’
generated by TVAE closely resembles the real (x,y) of
Task 1, compared to that generated by VAE. This indicates
that TVAE is more effective in generating data samples that
better simulate real samples, which allows SingleGen-TVAE
to provide superior data for replay during CL model train-
ing, resulting in improved performance in OWD prediction
compared to SingleGen-VAE.

C. SINGLE GENERATOR VS MULTI-GENERATOR

In the model training phase before training Task 12, the
generator or generators is/are trained with  of Task 1 to
Task 11, and the solver (OWD model) is trained with (x, y)
of Task 1 to Task 11. To compare single generator and multi-
generator, we generate ' of Task 1 to Task 11 by single
generator and multi-generator. As shown in Fig. 6, we then
perform PCA with 2 principal components on generated
x’ and visualize these components using the KDE plot.
Additionally, we plot the histogram of the corresponding
y' by applying OWD model on generated x’. We take
the CL task sequence with Case ID 1 as an example. As
demonstrated in Fig. 6, with a focus on the main and tail
parts of the histogram of y’, the data distribution of 3’
generated by the multi-generator more closely resembles the
real y compared to that generated by the single generator.
As multi-generator could generate data samples that simulate
the real samples better, MultiGen-TVAE has better generated
data samples to replay for training of CL model, resulting
in enhanced performance in OWD prediction compared to
SingleGen-TVAE.

D. EVALUATION ON OWD TAIL

In addition to assessing OWD prediction across all data
samples, it is important to evaluate the tail of the OWD
distribution. To do this, we set the threshold and select the
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FIGURE 7. Performance evaluation on OWD tail in CL task sequence Group 1 and Group 2 by metrics AveMAPE, F.

data samples with OWD values larger than it, then calculate
the evaluation metrics using only these selected samples.
Fig. 7 presents the evaluation results for the tail of the
OWD distribution using metrics AveMAPE and F with CL
task sequences Group 1 and Group 2. The results indicate
that, for nearly all task sequences, the proposed MultiGen-
TVAE method outperforms SingleGen-TVAE in terms of
tail performance for both AveMAPE and F metrics. This
observation aligns with the findings in Section VI C that
multi-generator could generate data samples that simulate
the real samples better compared with single generator for
OWD tail part.
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E. COMPARISON OF GENERATORS WITH SAME SIZE

To compare the performance of SingleGen-TVAE and
MultiGen-TVAE with generative models having an equiva-
lent number of learnable parameters, we doubled the param-
eters for SingleGen-TVAE, as outlined in Table 3. Specif-
ically, we increased each hidden layer in SingleGen-TVAE
from 128 to 256 units. The evaluation was conducted using
the CL sequence, with Case ID 3 as an example. As illus-
trated in Fig. 8, MultiGen-TVAE outperforms SingleGen-
TVAE, despite the doubling of generator parameters in
SingleGen-TVAE.
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FIGURE 8. Performance evaluation on OWD by metrics AveMAPE, F with
doubled size of generator parameters.

VIl. DISCUSSION

In this section, we discuss the approach presented in this
paper from both a methodological perspective and a use case
perspective.

A. MULTI-GENERATOR APPROACH TO CL

From a methodological perspective, in the context of OWD
prediction, we have made several key contributions aimed at
mitigating the risk of catastrophic forgetting in CL. Firstly,
we emphasized the significance of utilizing a tailored gener-
ative model to ensure that the data synthesis process aligns
with the structural characteristics and specific requirements
of the data. Given our use case involving tabular data, we
adopted a generative model specifically designed for this
type of data, the TVAE. This choice was shown to sig-
nificantly enhance the quality of generated samples needed
for effective replay and the retention of learned information.
Next, we designed a multi-generator architecture for genera-
tive replay to tackle the challenges posed by single-generator
systems, particularly in the presence of concept drift within
the CL framework. By employing multiple generators, it was
shown that we can reduce the effects of concept drift since
each generator would be able to concentrate on producing
samples tailored to a distinct concept, thereby enhancing
the preservation of task-specific knowledge. Finally, to ad-
dress the challenge of generator selection within our multi-
generator generative replay framework, we implemented a
domain-guided selection mechanism that utilizes domain
knowledge for optimal task assignment to generators. In our
use case, the differentiating factor for generator selection was
the UE device type, provided as domain knowledge. This
is one of the potential task configuration options and that
other possibilities could be studied in future works. More-
over, moving forward, exploring data-driven approaches for
generator selection presents a promising direction for future
research. Through comprehensive empirical experiments, we
demonstrated that the steps above significantly reduce risks
of catastrophic forgetting and enhance the model’s capability

to sustain performance across a diverse array of tasks.
By maintaining high-quality data replay and strategic task
allocation, our approach enhances adaptability in dynamic
environments.

Replay has been shown to be an effective strategy in CL if
performance is the main objective. However, it requires large
memory and often infeasible in real world applications where
the access to past data is limited due to privacy-preserving.
Instead of saving raw data, generative replay is a competitive
alternative approach. As an example, the size of the raw data
of task sequence with Case ID 1 is 170 MB. The size of one
TVAE generator is 2.4 MB, and multi-generator with two
TVAE generator in this case is 4.8 MB. When the number
of tasks increase, the size of raw data increases linearly,
while the size of generator won’t change. This illustrates the
benefits of our approach from an energy perspective. Our
results show that the current single generator approach does
not work well, in order to make it comparable to the multi-
generator approach taken here it is reasonable to expect that
it would get very costly from an energy perspective as this
would require more training data and model parameters in
the generator. For future work, it would be interesting to
look closer at the generator training; how much energy does
the training of the generator take compared to Replay-Based
approaches with sample selection, and how large in terms
of data, parameters and training would a successful single
generator approach be. Furthermore, studying the energy
consumption of this method compared to simple baselines
such as isolated training for each task would be interesting.

B. ONE-WAY DELAY PREDICTION IN THE 3GPP
ARCHITECTURE

We believe that the proposed approach for predicting OWD
is a key enabler for performance verification, service assur-
ance, and resource optimization in future networks. How-
ever, to fully exploit the opportunities, the approach must
also align with the network design; specifically, the 3GPP
architecture. In the following, we discuss this topic and
present one possible perspective on how this integration can
be realized'.

Fig. 9 illustrates a network infrastructure having three
main components: the RAN, the core network (CN), and
OAM functionality. A set of UEs communicate with appli-
cations residing on the far side of the network. We envision
the OWD model operating as part of the NWDAF in the core
network, basing its predictions on baseband data streamed
from the gNB via the baseband (BB) data inference pipeline.
The OWD predictions can then be communicated back to the
gNB for resource optimization, or to the application via the
Network Exposure Function (NEF) to enable communication
optimization at the application level.

As highlighted in this paper, the OWD model must be
continuously updated to maintain its predictive performance.

Note that this view does not necessarily reflect the opinions of Ericsson

or our project partners.
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are collected differently depending on model inference or model retraining.

This is managed within the NWDAF as part of the ML
pipeline [15], responsible for continuously monitoring the
performance of ML models in the NWDAF, and if deviations
are detected, retraining is triggered. In such cases, our pro-
posed approach is activated. During training, data is collected
from UEs and gNBs using the dashed data pipelines.

Note that collecting OWD labels in operational networks
may be challenging. It may not be feasible for all UEs and
will likely depend on a subset of specifically instrumented
UEs or controlled field trials. The exact process for label
collection is outside the scope of this paper.

VIIl. RELATED WORK

CL methods have been proposed to improve various aspects
of ML and has been categorized in different ways [29]
[30] [31]. In [29], based on how task specific informa-
tion is stored and used throughout the sequential learn-
ing process, the authors distinguish five major categories,
which are Regularization-Based approach, Replay-Based ap-
proach, Optimization-Based approach, Representation-Based
approach and Architecture-Based approach. The different
categories come with different properties related to energy
usage as described in [32], where the authors compare
different CL approaches in terms of energy consumption.
Here the Representation-Based approaches score highest on
energy efficiency but other approaches such as Replay-Based
still outperform the naive baseline of joint training.

The focus of our paper is generative replay or pseudo-
rehearsal, which is a sub-direction in the Replay-Based
approach. Instead of storing old training samples, generative
replay requires training a generative model to replay gen-
erated data. Compared with other approaches, one benefit
of generative replay is that the generative model makes
it possible to provide data samples from previous tasks
for future needs, with much less memory and feasible for
privacy concerns. As it is presented in Section III, DGR
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[19] establishes a framework that the learning of each new
task is coupled with replaying generated data sampled from
one generative model, ensuring the retention of previously
acquired knowledge. MeRGAN [33] incorporates a memory
replay mechanism to prevent catastrophic forgetting, which
is further enforces through either joint training or replay
alignment.

CL approaches in various categories have advantages
and work best within specific scenarios. Between the cat-
egories, approaches are often orthogonal with respect to
each other. Hence, generative replay could be hybrid with
other CL strategies. To mitigate catastrophic forgetting of
generative models, VCL [34] uses a weight regularization
based variational Bayesian approach, and maintaining a
distribution over parameters and updating it using evidence
lower bound (ELBO). DGM [35] is inspired by biological
synaptic plasticity principles, incorporating mechanisms like
memory consolidation and task-specific adaptations.

For pseudo-rehearsal, the generative models could be
of various types, such as generative adversarial networks
(GANs) and variational autoencoder (VAE). GANs are
typically used in scenarios where high-quality, realistic
samples are required, such as image generation, super-
resolution, and artificial data generation [35]. GANs
are highly flexible and can be adapted to various types
of generative tasks, but can be harder to control due
to the adversarial nature. VAEs are more suited for
tasks where a structured latent space and stable training
are important [36] [37]. Since VAEs have an explicit,
interpretable latent space, they are often more useful in
applications where understanding the latent factors of data
is important. Besides GANs and VAE, the novel approach
DDGR [38] adopts a diffusion model as the generator and
calculates an instruction-operator through the classifier to
instruct the generation of samples.
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IX. CONCLUSION

In this paper, we present a novel approach which intro-
duces the concept of multi-generator for the state-of-the-
art CL generative replay framework, along with TVAE
as generative models. We emphasized the significance of
utilizing a tailored generative model and producing samples
tailored to a distinct concept by multi-generator, to enhance
the preservation of data and task-specific knowledge. For
our use case, the domain knowledge of UE capabilities
is incorporated into the learning process for determining
generator setup and relevance. The proposed approach is
evaluated across a diverse set of scenarios with data that is
collected in a realistic 5G testbed, demonstrates mitigation of
catastrophic forgetting of OWD prediction and tail prediction
model, in comparison to baselines. Strategic task allocation
combined with high-quality data replay empowers our ap-
proach to adapt more effectively in dynamic environments.
Furthermore, this approach reduces the need for data storage
efficiently, addressing the challenges of resource constraints
in 5G networks. Last but not least, we discuss how an
OWD prediction engine can be integrated into the NWDAF
in 3GPP architecture, which helps the application of the
approach in operational networks.

For future research, one promising direction is to ex-
plore data-driven approaches for generator selection, and to
evaluate the performance in comparison to domain-guided
selection. In addition, future work may benefit from in-
vestigate alternative generative model architectures, such as
temporal generative models, especially when OWD datasets
are represented as time series data.
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