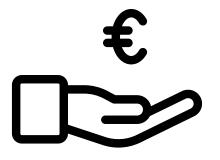


SUSTAIN-6G

Sustainability terminology and needs

Marja Matinmikko-Blue, University of Oulu, Task 2.3 lead SUSTAIN-6G Webinar, 17th of October 2025


Sustainability pillars

Economic sustainability

Social sustainability

Environmental sustainability

Sustainability aspects

Sustainable 6G

6G for sustainability

Resulting six sustainability dimensions

Sustainable 6G

Social sustainability

Environmental sustainability

Sustainable 6G "by design" needs a holistic approach

6G for Sustainability

New SUSTAIN-6G terminology

First order effects

Direct economic, societal or environmental effect associated with the existence of an ICT based solution, and generic processes supporting the deployment and operation of the ICT based solution.

- These could be positive and/or negative for a stakeholder.
- Examples include, the raw materials acquisition, production, use and end-of-life treatment stages.

Second order effects

Effect induced by the use and application of ICT based solution which includes economic, societal or environmental changes. These could be positive and/or negative for a stakeholder.

- Target the intended purpose of use of ICT technology in the vertical sector and consider broader effects that the technology might trigger in society that we do not have full control over.
- Examples include reduced GHG emissions from reduced travel due to the use of ICTs, more efficient agriculture thanks to ICT solutions.

Key value related discussion

Key value refers to principles or qualities that individuals or groups deem important, desirable, or intrinsically good that may be addressed or impacted by ICT.

- No distinction is made to:
 - Values as criteria*: Human values providing motivating goals for technological development and criteria for evaluating intermediary results.
 - Values as outcomes*: the enabled benefits or detriments. As an outcome of "value creation" economic, social and/or ecological benefits stem from a technology, service or business model, but also detriments or risks can result. Outcomes can be connected to the technical enablers, meaning directly stemming from the technology itself, or connected to use cases, meaning emerging from the usage of the technology.

State of the art collection and analysis

Collection of state of the art material

 Stakeholders: Companies, standards bodies, regulatory bodies, verticals, forums, etc.

Document analysis

- Almost 100 documents
- Key concerns, 1st and 2nd order economic, societal and environmental effects and indicators, evaluation frameworks, etc.

Identified sustainability themes as basis for sustainability needs SUSTAILN

compliance

Environmental sustainability Social sustainability **Economic sustainability** Second order Second order Second order First order effects First order effects First order effects effects effects effects Security and privacy Better, more Costs associated with Changes in GHG Efficiency and GHG emissions/carbon concerns where data accessible/democratized emissions through user implementing new productivity gains and footprint in different breaches and and efficient healthcare. behavioral changes, technologies (e.g., Al, cost savings in phases from material cyberattacks can lead to education and other life optimized processes edge computing, businesses from energy extraction. financial losses, legal enhancing services mMIMO, and THz and improved and resource efficient manufacturing, use, to through connectivity liabilities, and damage to operational efficiencies communication, technologies and the end of life reputation, in addition to (reduced congestion infrastructure upgrades, digitalization the direct harm to people Usability of the system and emissions from training, system Energy consumption at and viability of the integration and radio traffic, travel High initial investment device, network and service proposition from Increased leisure time substitution) spectrum costs from upfront costs component levels and the user perspective and improved conditions for installing consumption for the workforce from through perceived Increased operational infrastructure and costs reductions Changes in energy latency and other quality increased automation in costs due to stricter of devices to be used in consumption and/or measures in vertical use product development, environmental verticals Resource energy efficiency due deployment and cases consumption, scarcity regulations and more to adopting operation of networks complex technologies, of resources including connectivity-enabled Market expansion from and infrastructures Societal acceptance tied and long-term cost metals, minerals, services into business new digital services and to ethical and regulatory saving due to ecowater, land, etc. operations or user revenues from verticals clarifications, backlash friendly innovations activities and increased market against perceived value through environmental harm sustainable practices and

Key values and key value indicators

SUSTAIN-6G terminology:

Key Value refers to principles or qualities that individuals or groups deem important, desirable, or intrinsically good that may be addressed or impacted by ICT.
Stakeholder perspective

• **Key Value Indicator (KVI)** is a qualitative assessment or quantitative metric used to observe the extent to which first order effects and second order effects align with the identified key values.

KVIs are not always quantitative or calculated.

Next steps

- Development of sustainability requirements definition methodology is on-going. Flow has been established and applications to use cases are on-going.
- The relationships between key sustainability concepts
 - Sustainability needs and requirements
 - Key values and KVIs

Disclaimer: This work is Co-funded by the European Union under Grant Agreement 101191936. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of all SUSTAIN-6G consortium parties nor those of the European Union or the SNS JU (granting authority). Neither the European Union nor the granting authority can be held responsible for them.

