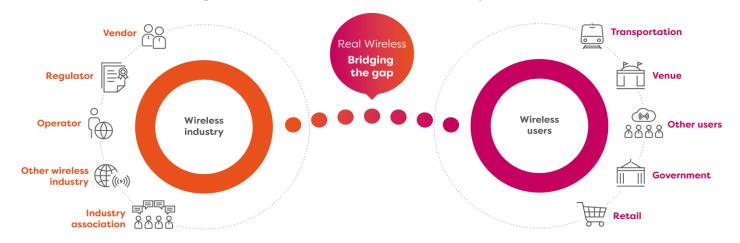


SUSTAIN-6G

Programme overview, with a focus on telecoms services for the energy utilities

Acknowledgements



- Thanks to the following collaborators in generating and/or reviewing these slides:
 - Among Real Wireless staff and associates:
 - Damian Bevan (Corresponding author:- damian.bevan@real-wireless.com), Julie Bradford, Abhaya Sumanasena, Tasos Karousos, Adrian Grilli
 - Sustain-6G smart grid expert colleagues:
 - Kim Schindhelm (Siemens), Daniel Hauer (Siemens), Imane Oussakel (EDF), Vincent Audebert (EDF)
 - Plus the wider **Sustain-6G team**... (see later slide)

Real Wireless bridges the gap

- Leading independent expert wireless advisory firm
- Technology and business of wireless
- Real Wireless builds bridges between the wireless industry and wireless users

Help the wireless industry to better understand and meet the needs of its customers

Help wireless users to get the best from wireless technologies to benefit business

Sustain-6G:- Overview

Project Management

- Coordinator: Christoph Schmelz, Nokia, DE
- Technical Manager: Olivier Bouchet, Orange, FR
- Innovation Manager: Anastasius Gavras, Eurescom, DE

Timeline

• 01.01.2025 – 30.06.2027 (2.5 years)

Budget & Effort

- Total funding 13 M€
- Total effort ~40 full-time contributors over project runtime

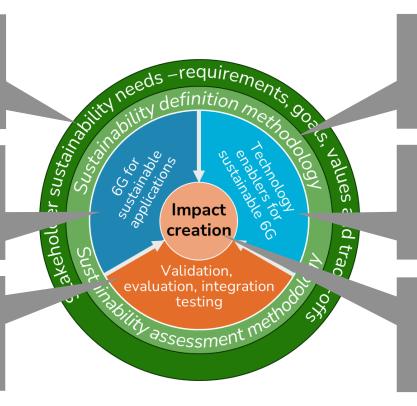
Consortium

- 24 partners from 10 European countries
- 7 telecommunication (operators and manufacturers), 4 large vertical industry, 5 academia (universities and research institutes), 8 SME (vertical and telecommunication sectors)

More

- EU Call: SNS-2024-STREAM-B-01-07 Sustainability Lighthouse
- Website: https://sustain-6g.eu
- https://www.linkedin.com/company/sustain-6g/
- https://www.youtube.com/@SUSTAIN-6GProject
- https://cordis.europa.eu/project/id/101191936

Motivation



Key questions on sustainability in the context of 6G

What is "sustainability"?

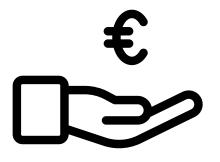
How can 6G help to make vertical applications sustainable?

How can "sustainability" be implemented?

How can "sustainability" be quantified?

Which technical enablers make 6G sustainable?

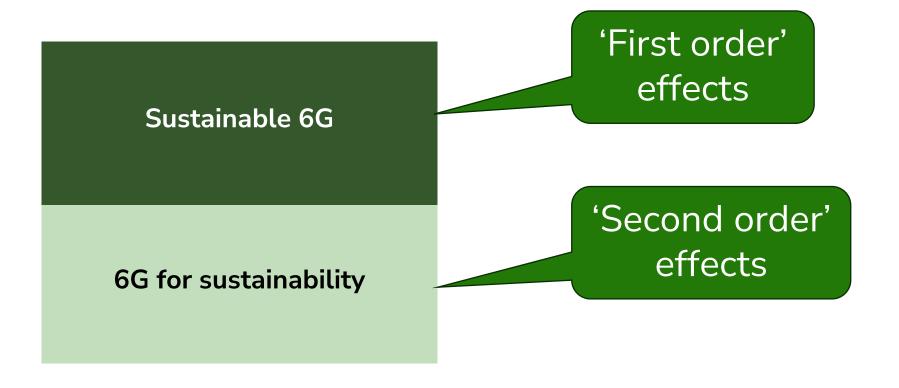
What do standards and regulation need to fully integrate sustainability in 6G?


Sustainability pillars

Economic sustainability

Social sustainability

Environmental sustainability



Sustainability aspects

Resulting six sustainability dimensions

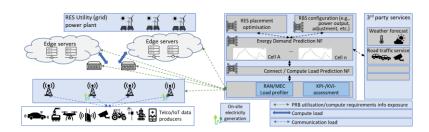
Sustainable 6G

Social sustainability

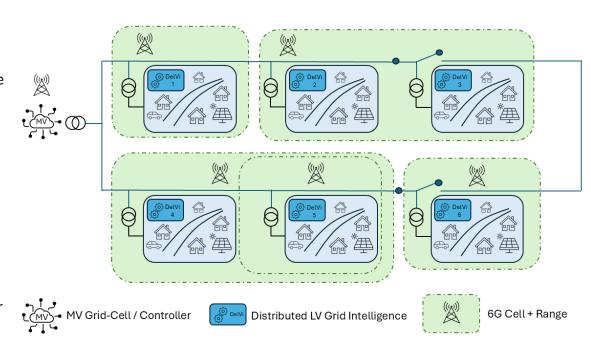
Environmental sustainability

Sustainable 6G "by design" needs a holistic approach

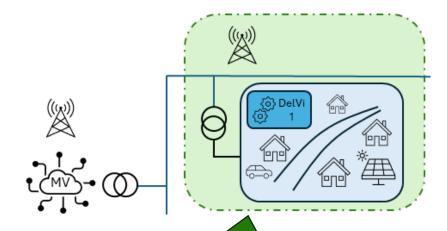
6G for Sustainability


'Verticals' and 'Use Cases'

- Various 'Vertical Use Cases' (UC) are defined for detailed study/ trials/ demonstrations within the project (in addition to consumer eMBB)
 - The UCs (three each), which are defined in S6G are in the vertical sectors of 'Agriculture' (AG), 'Smart Grid' (SG) and 'Telemedicine' (TM)
- We will focus here on the Smart Grid use cases, which themselves focus on the LV distribution grid
 - **SG1:** 6G enabled grid balancing services from distribution grid assets (Owner: P-NET)
 - **SG2:** Resilient Grid Section Operation (Owner: SAG-AT)
 - SG3: Joint Planning of 6G / Smart Grid Infrastructures (Owner: WINGS)



SG2 - Resilient Grid Section Operation


- LV grid controllers ('DeLVi' or 'DS')
 use 6G to talk to each other and to
 their 'MV Grid-Cell/ Controller' (CS)
 - The CS sets the 'nominal' operation, but DSs can negotiate amongst themselves to trade energy
- If there is a fault in the 6G wireless network, the desire is for DSs to still be able to talk to each other if physical connectivity still exists (e.g. they are connected to the same qNodeB)
 - This has been proposed as a new use case into 3GPP standards (S1-253317), in order to set new 6G requirements
- Siemens have capability to simulate all manner of likely scenarios using their BIFROST platform

LV grid sections – setting comms requirements

- It is the LV grid sections which are of main focus on Sustain-6G
 - MV grid may already include operational telecoms for monitoring and control, perhaps employing private wireless networks
 - However, we might expect that >90% of comms traffic in the future smart grid will be for **LV grid sections**
- Key questions regarding LV grid section telecoms requirements:
 - Availability (3,4,5-nines??)
 - Power resilience/ mains holdover (72 hours??)
 - Cybersecurity (NIS?)
 - Backwards compatibility/ expected lifespan (decades??)
 - Latency (ms)
 - Datarates (Mbps)
 - Data volume (Mbps/sq-km)
 - Others?

These LV grid sections (400/240V) are the principal zones of focus within the Sustain-6G project

Cui bono?

- Who benefits from this high quality connectivity for the LV grid?
 - e.g. UK Clean Power '**CP30**' and 2050 '**Net Zero**' targets will benefit (i.e. to the benefit of Planet Earth')
- But who would pay?
 - Taxpayers/ billpayers will end up paying, but through what mechanism? At what cost premium (e.g. for resilience)?
 - Will there be a 'market failure' requiring government/ regulator intervention to unblock?
- How might the connectivity be organised?
 - Solution(s) might be Private4/5/6G, MNO, LEO or ESN network etc.
 - The aim of Sustain-6G is to define '**reference scenarios**' for the LV smart grid, and study 'sustainability' of appropriate **candidate telecoms solutions**

Q&A/ discussion

- We welcome your inputs and feedback!
- Are we asking the right sorts of questions?
 - Utility telecoms requirements for LV grid sections?
 - Who benefits, who pays, what telecoms solutions?
- Are there any **additional requirements** from the smart grid use cases which the audience might have in mind, which could be proposed into **6G standards**?
 - Remembering that within the Sustain-6G consortium we have access to 3GPP representatives, including via MNOs and equipment vendors

Disclaimer: This work is Co-funded by the European Union under Grant Agreement 101191936. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of all SUSTAIN-6G consortium parties nor those of the European Union or the SNS JU (granting authority). Neither the European Union nor the granting authority can be held responsible for them.

Backups

Facts & Figures

Project Management

- Coordinator: Christoph Schmelz, Nokia, DE
- Technical Manager: Olivier Bouchet, Orange, FR
- Innovation Manager: Anastasius Gavras, Eurescom, DE

Timeline

• 01.01.2025 – 30.06.2027 (2.5 years)

Consortium

- 24 partners from 10 European countries
- 7 telecommunication (operators and manufacturers), 4 large vertical industry, 5 academia (universities and research institutes), 8 SME (vertical and telecommunication sectors)

Budget & Effort

- Total funding: 13 M€
- Total effort: ~40 full-time contributors over runtime

More

- EU Call: <u>SNS-2024-STREAM-B-01-07 Sustainability Lighthouse</u>
- Website: https://sustain-6g.eu
- https://www.linkedin.com/company/sustain-6g/
- https://www.youtube.com/@SUSTAIN-6GProject
- https://cordis.europa.eu/project/id/101191936

Motivation

The "Six Dimensions" of Sustainability in the context of 6G

Economic

Social

Environmental

Long-term business viability & scalability
Market competition & innovation
Industry collaboration & partnerships
Cost efficiency & resource optimisation
Economic growth
Regulatory framework & policy support

Bridging the digital divide (accessibility)
Trustworthiness & Responsible AI
Stakeholder engagement
Ethical business practices
Social well-being
Cultural diversity
Technology ethics

Net zero network design, deployment and operation
Use of renewable energy sources
Environmental data collection
Storage and analysis
Material usage and circularity

Environmental Total Cost of Ownership

Sustainable 6G "by design" needs a holistic approach

Digital transformation
Innovative business models
Workforce development
Opportunities for SMEs
Value network integration
Global reach
Social & economic inclusion

Digital equity
Services with high societal value
Personal privacy and data protection
Ethical business practices
Reliable, resilient and accurate information
Support for democratic values

Vertical-specific environmental challenges
Biodiversity & geodiversity impact
Optimisation of natural resources
Monitor & reduce emissions
Supply chain improvements
Smart energy management
Sustainable mobility

New SUSTAIN-6G terminology

First order effects

Direct economic, societal or environmental effect associated with the existence of an ICT based solution, and generic processes supporting the deployment and operation of the ICT based solution.

- These could be positive and/or negative for a stakeholder.
- Examples include, the raw materials acquisition, production, use and end-of-life treatment stages.

Second order effects

Effect induced by the use and application of ICT based solution which includes economic, societal or environmental changes. These could be positive and/or negative for a stakeholder.

- Target the intended purpose of use of ICT technology in the vertical sector and consider broader effects that the technology might trigger in society that we do not have full control over.
- Examples include reduced GHG emissions from reduced travel due to the use of ICTs, more efficient agriculture thanks to ICT solutions.

Identified sustainability themes as basis for sustainability needs SUSTAILN

Environmental sustainability Social sustainability **Economic sustainability** Second order Second order Second order First order effects First order effects First order effects effects effects effects Security and privacy Better, more Costs associated with Changes in GHG Efficiency and GHG emissions/carbon concerns where data accessible/democratized emissions through user implementing new productivity gains and footprint in different breaches and and efficient healthcare. behavioral changes, technologies (e.g., Al, cost savings in phases from material cyberattacks can lead to education and other life optimized processes edge computing, businesses from energy extraction. financial losses, legal enhancing services and improved mMIMO, and THz and resource efficient manufacturing, use, to liabilities, and damage to through connectivity operational efficiencies communication, technologies and the end of life reputation, in addition to (reduced congestion infrastructure upgrades. digitalization the direct harm to people Usability of the system and emissions from training, system Energy consumption at and viability of the integration and radio traffic, travel device, network and service proposition from substitution) spectrum component levels and

Resource consumption, scarcity of resources including metals, minerals, water, land, etc.

consumption

reductions

Changes in energy consumption and/or energy efficiency due to adopting connectivity-enabled services into business operations or user activities

Increased leisure time and improved conditions for the workforce from increased automation in product development, deployment and operation of networks and infrastructures

Societal acceptance tied to ethical and regulatory clarifications, backlash against perceived environmental harm

the user perspective

through perceived

latency and other quality

measures in vertical use

cases

Increased operational costs due to stricter environmental regulations and more complex technologies, and long-term cost saving due to ecofriendly innovations

High initial investment costs from upfront costs for installing infrastructure and costs

of devices to be used in

verticals

Market expansion from new digital services and revenues from verticals and increased market value through sustainable practices and compliance

Objectives

- 1 Identify and understand sustainability needs and values
- 2 Define methodologies for sustainability definition and assessment
- **3** Enhance integration of vertical UCs with 6G and enabling technologies to jointly reduce footprint and maximise handprint
- Enhance 6G technologies to reduce footprint and increase handprint
- 5 Validate, evaluate, and demonstrate sustainability value
- 6 Impact generation, sustainability guidelines and strategic roadmap

Objectives

1)

Identify and understand sustainability needs and values

Review, consolidate and define sustainability goals, values, indicators based on stakeholder requirements

Build a comprehensive inventory of 6G and relevant vertical UCs' concepts, technologies, components including their relevant KPIs and sustainability indicators

- 2
- Define methodologies for sustainability definition and assessment

Review and enhance concepts, processes, methodologies, and tools for holistically defining and assessing sustainability

- 3
- Enhance integration of vertical UCs with 6G to jointly reduce footprint and maximise handprint

Analyse, develop and deliver vertical UCs integrating 6G and enabling technologies to improve sustainability values

Develop and deliver Sustainability Management Plane (SMP) to enable E2E integrated sustainability-driven operation across network and vertical domains

- 4
- Enhance 6G technologies to reduce footprint and increase handprint

Develop and deliver solutions and enhancements for selected 6G technologies and components towards sustainability improvements, by reducing 6G footprint and increase handprint in vertical sectors

- 5
- Validate, evaluate, and demonstrate sustainability value

Validate 6G technologies on their impact to sustainability (positive / negative)

Evaluate and demonstrate methodologies, concepts, and solutions on applicability, implementability, and wrt. sustainability impact

- 6
- Impact generation, sustainability guidelines and strategic roadmap

Create impact through dissemination, standardisation, exploitation, by consolidating outcomes towards guidelines, best practices, business models and a strategic (standardisation and regulation) roadmap, to drive the development of 6G in a sustainability-integrated direction

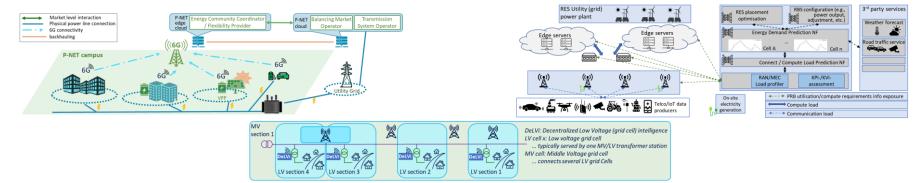
6G for sustainable applications - Smart Grid

6G enabled grid balancing services

Renewable energy resources (energy, wind) + electric vehicle charging imposes distributed stochastic generation and consumption, requiring real-time balancing (monitoring & control) of the distribution network and distributed energy resources for resilience, stability and security.

- Proposed solutions requests real-time procurement of Fast Frequency Response (FFR) sourced from flexible assets at the grid's edge, and operations such as MLbased optimal power flow, to maintain system frequency
- Utilise Internet of Things (IoT)-enabled distributed energy resources at the edge of the smart grid to provide artificial inertia and leverage the features of 6G and cloud/edge IoT computing continuum to apply realtime adjustments for grid stability. Further the application of AI-based digital twin approaches for adjustment forecasting will be investigated

Resilient grid section operation


Resilient smart grids (power sources including wind, solar, fossil etc.) must efficiently deliver electricity while minimising disruptions (flexible adjustments) such as overloads and blackouts

- Proposed solutions include real-time monitoring and control of electricity flow (local + interacting + synchronisation), aided by data analytics and predictive modelling, requiring adaptable communication technology
- Grid with self-awareness and prioritisation mechanisms (Distributed Low-Voltage intelligence DeLVi), solutions to reduce energy consumption
- Communication solutions with data rate adaptability and flexibility, minimisation of restarts and connection losses to core infrastructure

Joint planning of 6G / smart grid infrastructures

Power supply for flexible and adaptive ICT implementations (including multiple network layers, technologies) requires flexibility itself, and must be able to handle local power generation as well as potential volatility of (renewable) power availability

- Micro-grids offer a cost-effective solution for electricity demand management with leveraging localised power supply through deployment at cell sites or edge computing nodes, flexibility optimising electricity flows through innovative Energy Management Systems (EMS), involving local energy storage to ensure reliability during grid outages.
- Requires alignment of the operational interests of the mobile network and the smart grid with location specific optimisation to maximise cost-effectiveness (e.g. trafficaware offloading of network load and advanced sleep mode operations)

